|
SIGMA 13 (2017), 067, 25 pages arXiv:1301.7632
https://doi.org/10.3842/SIGMA.2017.067
Minuscule Schubert Varieties and Mirror Symmetry
Makoto Miura
Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul, 130-722, Republic of Korea
Received August 23, 2016, in final form August 16, 2017; Published online August 23, 2017
Abstract
We consider smooth complete intersection Calabi-Yau 3-folds in minuscule Schubert varieties, and study their mirror symmetry by degenerating the ambient Schubert varieties to Hibi toric varieties. We list all possible Calabi-Yau 3-folds of this type up to deformation equivalences, and find a new example of smooth Calabi-Yau 3-folds of Picard number one; a complete intersection in a locally factorial Schubert variety ${\boldsymbol{\Sigma}}$ of the Cayley plane ${\mathbb{OP}}^2$. We calculate topological invariants and BPS numbers of this Calabi-Yau 3-fold and conjecture that it has a non-trivial Fourier-Mukai partner.
Key words:
Calabi-Yau; mirror symmetry; minuscule; Schubert variety; toric degeneration.
pdf (726 kb)
tex (154 kb)
References
-
Almkvist G., van Enckevort C., van Straten D., Zudilin W., Tables of Calabi-Yau equations, math.AG/0507430.
-
Almkvist G., Zudilin W., Differential equations, mirror maps and zeta values, in Mirror Symmetry. V, AMS/IP Stud. Adv. Math., Vol. 38, Amer. Math. Soc., Providence, RI, 2006, 481-515, math.NT/0402386.
-
Aspinwall P.S., Greene B.R., Morrison D.R., The monomial-divisor mirror map, Int. Math. Res. Not. 1993 (1993), 319-337, alg-geom/9309007.
-
Baston R.J., Eastwood M.G., The Penrose transform. Its interaction with representation theory, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1989.
-
Batyrev V.V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994), 493-535, alg-geom/9310003.
-
Batyrev V.V., Toric degenerations of Fano varieties and constructing mirror manifolds, in The Fano Conference, University Torino, Turin, 2004, 109-122, alg-geom/9712034.
-
Batyrev V.V., Borisov L.A., Mirror duality and string-theoretic Hodge numbers, Invent. Math. 126 (1996), 183-203, alg-geom/9509009.
-
Batyrev V.V., Borisov L.A., On Calabi-Yau complete intersections in toric varieties, in Higher-Dimensional Complex Varieties (Trento, 1994), de Gruyter, Berlin, 1996, 39-65, alg-geom/9412017.
-
Batyrev V.V., Ciocan-Fontanine I., Kim B., van Straten D., Conifold transitions and mirror symmetry for Calabi-Yau complete intersections in Grassmannians, Nuclear Phys. B 514 (1998), 640-666, alg-geom/9710022.
-
Batyrev V.V., Ciocan-Fontanine I., Kim B., van Straten D., Mirror symmetry and toric degenerations of partial flag manifolds, Acta Math. 184 (2000), 1-39, math.AG/9803108.
-
Batyrev V.V., Kreuzer M., Constructing new Calabi-Yau 3-folds and their mirrors via conifold transitions, Adv. Theor. Math. Phys. 14 (2010), 879-898, arXiv:0802.3376.
-
Bershadsky M., Cecotti S., Ooguri H., Vafa C., Holomorphic anomalies in topological field theories, Nuclear Phys. B 405 (1993), 279-304, hep-th/9302103.
-
Bershadsky M., Cecotti S., Ooguri H., Vafa C., Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys. 165 (1994), 311-427, hep-th/9309140.
-
Bertram A., Quantum Schubert calculus, Adv. Math. 128 (1997), 289-305, alg-geom/9410024.
-
Birkhoff G., Lattice theory, American Mathematical Society Colloquium Publications, Vol. 25, 3rd ed., Amer. Math. Soc., Providence, R.I., 1979.
-
Bondal A., Galkin S.S., Degeneration of minuscule varieties, quiver toric varieties and mirror symmetry, Seminar at IPMU, 2010.
-
Borisov L.A., Towards the mirror symmetry for Calabi-Yau complete intersections in Gorenstein toric Fano varieties, alg-geom/9310001.
-
Brown J., Lakshmibai V., Singular loci of Bruhat-Hibi toric varieties, J. Algebra 319 (2008), 4759-4779, arXiv:0707.2392.
-
Brown J., Lakshmibai V., Singular loci of Grassmann-Hibi toric varieties, Michigan Math. J. 59 (2010), 243-267, math.AG/0612289.
-
Candelas P., de la Ossa X.C., Green P.S., Parkes L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), 21-74.
-
Chaput P.E., Manivel L., Perrin N., Quantum cohomology of minuscule homogeneous spaces, Transform. Groups 13 (2008), 47-89, math.AG/0607492.
-
Clemens C.H., Double solids, Adv. Math. 47 (1983), 107-230.
-
Fulton W., Woodward C., On the quantum product of Schubert classes, J. Algebraic Geom. 13 (2004), 641-661, math.AG/0112183.
-
Galkin S.S., An explicit construction of Miura's varieties, Talk presented at Tokyo University, Graduate School for Mathematical Sciences, Komaba Campus, February 20, 2014.
-
Galkin S.S., Apéry constants of homogeneous varieties, arXiv:1604.04652.
-
Galkin S.S., Kuznetsov A., Movshev M., An explicit construction of Miura's varieties, in prepration.
-
Gerhardus A., Jockers H., Dual pairs of gauged linear sigma models and derived equivalences of Calabi-Yau threefolds, J. Geom. Phys. 114 (2017), 223-259, arXiv:1505.00099.
-
Givental A.B., Equivariant Gromov-Witten invariants, Int. Math. Res. Not. 1996 (1996), 613-663, alg-geom/9603021.
-
Gonciulea N., Lakshmibai V., Degenerations of flag and Schubert varieties to toric varieties, Transform. Groups 1 (1996), 215-248.
-
Gopakumar R., Vafa C., M-theory and topological strings-II, hep-th/9812127.
-
Greene B.R., Plesser M.R., Duality in Calabi-Yau moduli space, Nuclear Phys. B 338 (1990), 15-37.
-
Guest M.A., From quantum cohomology to integrable systems, Oxford Graduate Texts in Mathematics, Vol. 15, Oxford University Press, Oxford, 2008.
-
Hibi T., Distributive lattices, affine semigroup rings and algebras with straightening laws, in Commutative Algebra and Combinatorics (Kyoto, 1985), Adv. Stud. Pure Math., Vol. 11, North-Holland, Amsterdam, 1987, 93-109.
-
Hibi T., Higashitani A., Smooth Fano polytopes arising from finite partially ordered sets, Discrete Comput. Geom. 45 (2011), 449-461, arXiv:0908.3404.
-
Hibi T., Watanabe K., Study of three-dimensional algebras with straightening laws which are Gorenstein domains. I, Hiroshima Math. J. 15 (1985), 27-54.
-
Hori K., Knapp J., A pair of Calabi-Yau manifolds from a two parameter non-Abelian gauged linear sigma model, arXiv:1612.06214.
-
Hosono S., Konishi Y., Higher genus Gromov-Witten invariants of the Grassmannian, and the Pfaffian Calabi-Yau 3-folds, Adv. Theor. Math. Phys. 13 (2009), 463-495, arXiv:0704.2928.
-
Hosono S., Lian B.H., Oguiso K., Yau S.-T., Autoequivalences of derived category of a $K3$ surface and monodromy transformations, J. Algebraic Geom. 13 (2004), 513-545, math.AG/0201047.
-
Hosono S., Takagi H., Determinantal quintics and mirror symmetry of Reye congruences, Comm. Math. Phys. 329 (2014), 1171-1218, arXiv:1208.1813.
-
Hosono S., Takagi H., Mirror symmetry and projective geometry of Reye congruences I, J. Algebraic Geom. 23 (2014), 279-312, arXiv:1101.2746.
-
Inoue D., Ito A., Miura M., Complete intersection Calabi-Yau manifolds with respect to homogeneous vector bundles on Grassmannians, arXiv:1607.07821.
-
Inoue D., Ito A., Miura M., $I$-functions of Calabi-Yau 3-folds in Grassmannians, arXiv:1607.08137.
-
Jones B.F., Singular Chern classes of Schubert varieties via small resolution, Int. Math. Res. Not. 2010 (2010), 1371-1416, arXiv:0804.0202.
-
Kawamata Y., Deformations of canonical singularities, J. Amer. Math. Soc. 12 (1999), 85-92, alg-geom/9712018.
-
Kim B., Quantum hyperplane section theorem for homogeneous spaces, Acta Math. 183 (1999), 71-99, alg-geom/9712008.
-
Kresch A., Tamvakis H., Quantum cohomology of orthogonal Grassmannians, Compos. Math. 140 (2004), 482-500, math.AG/0306338.
-
Lakshmibai V., Mukherjee H., Singular loci of Hibi toric varieties, J. Ramanujan Math. Soc. 26 (2011), 1-29, arXiv:0706.2686.
-
Lakshmibai V., Musili C., Seshadri C.S., Geometry of $G/P$. III. Standard monomial theory for a quasi-minuscule $P$, Proc. Indian Acad. Sci. Sect. A Math. Sci. 88 (1979), 93-177.
-
Lakshmibai V., Weyman J., Multiplicities of points on a Schubert variety in a minuscule $G/P$, Adv. Math. 84 (1990), 179-208.
-
Lian B.H., Liu K., Yau S.-T., Mirror principle. I, Asian J. Math. 1 (1997), 729-763, alg-geom/9712011.
-
Morrison D.R., Through the looking glass, in Mirror Symmetry, III (Montreal, PQ, 1995), AMS/IP Stud. Adv. Math., Vol. 10, Amer. Math. Soc., Providence, RI, 1999, 263-277, alg-geom/9705028.
-
Mukai S., Duality of polarized $K3$ surfaces, in New Trends in Algebraic Geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge University Press, Cambridge, 1999, 311-326.
-
Nakayama N., Invariance of the plurigenera of algebraic varieties, RIMS preprint 1191, 1998.
-
Namikawa Y., On deformations of Calabi-Yau $3$-folds with terminal singularities, Topology 33 (1994), 429-446.
-
Perrin N., Small resolutions of minuscule Schubert varieties, Compos. Math. 143 (2007), 1255-1312, math.AG/0601117.
-
Perrin N., The Gorenstein locus of minuscule Schubert varieties, Adv. Math. 220 (2009), 505-522, arXiv:0704.0895.
-
Proctor R.A., Interactions between combinatorics, Lie theory and algebraic geometry via the Bruhat orders, Ph.D. Thesis, Massachusetts Institute of Technology, 1981.
-
Ravindra G.V., Srinivas V., The Grothendieck-Lefschetz theorem for normal projective varieties, J. Algebraic Geom. 15 (2006), 563-590, math.AG/0511134.
-
Rødland E.A., The Pfaffian Calabi-Yau, its mirror, and their link to the Grassmannian $G(2,7)$, Compositio Math. 122 (2000), 135-149, math.AG/9801092.
-
Stanley R.P., Two poset polytopes, Discrete Comput. Geom. 1 (1986), 9-23.
-
Ueda K., Yoshida Y., Equivariant A-twisted GLSM and Gromov-Witten invariants of CY 3-folds in Grassmannians, arXiv:1602.02487.
-
van Enckevort C., van Straten D., Electronic database of Calabi-Yau equations, available at http://enriques.mathematik.uni-mainz.de/CYequations/.
-
van Enckevort C., van Straten D., Monodromy calculations of fourth order equations of Calabi-Yau type, in Mirror symmetry. V, AMS/IP Stud. Adv. Math., Vol. 38, Amer. Math. Soc., Providence, RI, 2006, 539-559.
-
Wagner D.G., Singularities of toric varieties associated with finite distributive lattices, J. Algebraic Combin. 5 (1996), 149-165.
-
Zudilin V.V., Binomial sums associated with rational approximations to $\zeta(4)$, Math. Notes 75 (2004), 594-597, math.CA/0311196.
|
|