|
SIGMA 13 (2017), 071, 16 pages arXiv:1704.07003
https://doi.org/10.3842/SIGMA.2017.071
Contribution to the Special Issue on Symmetries and Integrability of Difference Equations
$N$-Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation
Bao-Feng Feng a and Yasuhiro Ohta b
a) School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
b) Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan
Received April 25, 2017, in final form September 03, 2017; Published online September 06, 2017
Abstract
In this paper, a general bright-dark soliton solution in the form of Pfaffian is constructed for an integrable semi-discrete vector NLS equation via Hirota's bilinear method. One- and two-bright-dark soliton solutions are explicitly presented for two-component semi-discrete NLS equation; two-bright-one-dark, and one-bright-two-dark soliton solutions are also given explicitly for three-component semi-discrete NLS equation. The asymptotic behavior is analysed for two-soliton solutions.
Key words:
bright-dark soliton; semi-discrete vector NLS equation; Hirota's bilinear method; Pfaffian.
pdf (392 kb)
tex (36 kb)
References
-
Ablowitz M.J., Biondini G., Prinari B., Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions, Inverse Problems 23 (2007), 1711-1758.
-
Ablowitz M.J., Clarkson P.A., Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, Vol. 149, Cambridge University Press, Cambridge, 1991.
-
Ablowitz M.J., Ladik J.F., Nonlinear differential-difference equations, J. Math. Phys. 16 (1975), 598-603.
-
Ablowitz M.J., Ladik J.F., Nonlinear differential-difference equations and Fourier analysis, J. Math. Phys. 17 (1976), 1011-1018.
-
Ablowitz M.J., Ohta Y., Trubatch A.D., On discretizations of the vector nonlinear Schrödinger equation, Phys. Lett. A 253 (1999), 287-304, solv-int/9810014.
-
Ablowitz M.J., Prinari B., Trubatch A.D., Discrete and continuous nonlinear Schrödinger systems, London Mathematical Society Lecture Note Series, Vol. 302, Cambridge University Press, Cambridge, 2004.
-
Adler V.E., Postnikov V.V., On vector analogs of the modified Volterra lattice, J. Phys. A: Math. Gen. 41 (2008), 455203, 16 pages, arXiv:0808.0101.
-
Agrawal G.P., Nonlinear fiber optics, 5th ed., Elsevier Inc., London, 2013.
-
Barashenkov I.V., Getmanov B.S., Multisoliton solutions in the scheme for unified description of integrable relativistic massive fields. Non-degenerate ${\mathfrak{sl}}(2,{\mathbb C})$ case, Comm. Math. Phys. 112 (1987), 423-446.
-
Barashenkov I.V., Getmanov B.S., Kovtun V.E., Integrable model with nontrivial interaction between sub- and superluminal solitons, Phys. Lett. A 128 (1988), 182-186.
-
Barashenkov I.V., Getmanov B.S., Kovtun V.E., The unified approach to integrable relativistic equations: soliton solutions over nonvanishing backgrounds. I, J. Math. Phys. 34 (1993), 3039-3053.
-
Barashenkov I.V., Getmanov B.S., The unified approach to integrable relativistic equations: soliton solutions over nonvanishing backgrounds. II, J. Math. Phys. 34 (1993), 3054-3072.
-
Benney D.J., Newell A.C., The propagation of nonlinear wave envelopes, Stud. Appl. Math. 46 (1967), 133-139.
-
Dalfovo F., Giorgini S., Pitaevskii L.P., Stringari S., Theory of Bose-Einstein condensation in trapped gases, Rev. Modern Phys. 71 (1999), 463-512, cond-mat/9806038.
-
Doliwa A., Santini P.M., Integrable dynamics of a discrete curve and the Ablowitz-Ladik hierarchy, J. Math. Phys. 36 (1995), 1259-1273, solv-int/9407005.
-
Dubrovin B.A., Malanyuk T.M., Krichever I.M., Makhan'kov V.G., Exact solutions of the time-dependent Schrödinger equation with self-consistent potentials, Sov. J. Part. Nucl. 19 (1988), 252-269.
-
Feng B.-F., General $N$-soliton solution to a vector nonlinear Schrödinger equation, J. Phys. A: Math. Theor. 47 (2014), 355203, 22 pages.
-
Hasegawa A., Kodama Y., Solitons in optical communications, Clarendon, Oxford, 1995.
-
Hasegawa A., Tappert F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomolous dispersion, Appl. Phys. Lett. 23 (1973), 142-144.
-
Hasegawa A., Tappert F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion, Appl. Phys. Lett. 23 (1973), 171-172.
-
Hirota R., The direct method in soliton theory, Cambridge Tracts in Mathematics, Vol. 155, Cambridge University Press, Cambridge, 2004.
-
Kanna T., Lakshmanan M., Tchofo Dinda P., Akhmediev N., Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrödinger equations, Phys. Rev. E 73 (2006), 026604, 15 pages, nlin.SI/0511034.
-
Kivshar Y.S., Agrawal G.P., Optical solitons: from fibers to photonic crystals, Academic Press, San Diego, 2003.
-
Krökel D., Halas N.J., Giuliani G., Grischkowsky D., Dark-pulse propagation in optical fibers, Phys. Rev. Lett. 60 (1988), 29-32.
-
Makhan'kov V.G., Pashaev O.K., Nonlinear Schrödinger equation with noncompact isogroup, Theoret. and Math. Phys. 121 (1982), 979-987.
-
Manakov S.V., On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. Phys. JETP 38 (1974), 248-253.
-
Maruno K.-I., Ohta Y., Casorati determinant form of dark soliton solutions of the discrete nonlinear Schrödinger equation, J. Phys. Soc. Japan 75 (2006), 054002, 10 pages, nlin.SI/0506052.
-
Narita K., Soliton solution for discrete Hirota equation, J. Phys. Soc. Japan 59 (1990), 3528-3530.
-
Ohta Y., Pfaffian solution for coupled discrete nonlinear Schrödinger equation, Chaos Solitons Fractals 11 (2000), 91-95.
-
Ohta Y., Special solutions of discrete integrable systems, in Discrete Integrable Systems, Lecture Notes in Phys., Vol. 644, Editors B. Grammaticos, Y. Kosmann-Schwarzbach, T. Tamizhmani, Springer, Berlin, 2004, 57-83.
-
Ohta Y., Discretization of coupled nonlinear Schrödinger equations, Stud. Appl. Math. 122 (2009), 427-447.
-
Ohta Y., Hirota R., Tsujimoto S., Imai T., Casorati and discrete Gram type determinant representations of solutions to the discrete KP hierarchy, J. Phys. Soc. Japan 62 (1993), 1872-1886.
-
Ohta Y., Wang D.-S., Yang J., General $N$-dark-dark solitons in the coupled nonlinear Schrödinger equations, Stud. Appl. Math. 127 (2011), 345-371, arXiv:1011.2522.
-
Park Q.-H., Shin H.J., Systematic construction of multicomponent optical solitons, Phys. Rev. E 61 (2000), 3093-3106.
-
Prinari B., Ablowitz M.J., Biondini G., Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions, J. Math. Phys. 47 (2006), 063508, 33 pages.
-
Prinari B., Vitale F., Inverse scattering transform for the focusing Ablowitz-Ladik system with nonzero boundary conditions, Stud. Appl. Math. 137 (2016), 28-52.
-
Radhakrishnan R., Lakshmanan M., Bright and dark soliton solutions to coupled nonlinear Schrödinger equations, J. Phys. A: Math. Gen. 28 (1995), 2683-2692.
-
Sheppard A.P., Kivshar Y.S., Polarized dark solitons in isotropic Kerr media, Phys. Rev. E 55 (1997), 4773-4782.
-
Tsuchida T., Integrable discretization of coupled nonlinear Schrödinger equations, Rep. Math. Phys. 46 (2000), 269-278, nlin.SI/0002048.
-
Tsuchida T., Ujino H., Wadati M., Integrable semi-discretization of the coupled nonlinear Schrödinger equations, J. Phys. A: Math. Gen. 32 (1999), 2239-2262, solv-int/9903013.
-
Tsujimoto S., Integrable discretization of the integrable systems, in Applied Integrable Systems, Editor Y. Nakamura, Shokabo, Tokyo, 2000, 1-52.
-
Tsuzuki T., Nonlinear waves in the Pitaevskii-Gross equation, J. Low Temp. Phys. 4 (1971), 441-457.
-
van der Mee C., Inverse scattering transform for the discrete focusing nonlinear Schrödinger equation with nonvanishing boundary conditions, J. Nonlinear Math. Phys. 22 (2015), 233-264.
-
Vekslerchik V.E., Konotop V.V., Discrete nonlinear Schrödinger equation under nonvanishing boundary conditions, Inverse Problems 8 (1992), 889-909.
-
Vijayajayanthi M., Kanna T., Lakshmanan M., Bright-dark solitons and their collisions in mixed $N$-coupled nonlinear Schrödinger equations, Phys. Rev. A 77 (2008), 013820, 18 pages, arXiv:0711.4424.
-
Weiner A.M., Heritage J.P., Hawkins R.J., Thurston R.N., Kirschner E.M., Leaird D.E., Tomlinson W.J., Experimental observation of the fundamental dark soliton in optical fibers, Phys. Rev. Lett. 61 (1988), 2445-2448.
-
Yajima N., Oikawa M., A class of exactly solvable nonlinear evolution equations, Progr. Theoret. Phys. 54 (1975), 1576-1577.
-
Zakharov V.E., Collapse of Langumuir waves, Sov. Phys. JETP 35 (1972), 908-914.
-
Zakharov V.E., Shabat A.B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972), 62-69.
-
Zakharov V.E., Shabat A.B., Interaction betweem solitons in a stable medium, Sov. Phys. JETP 37 (1973), 823-828.
-
Zhang Y.J., Cheng Y., Solutions for the vector $k$-constrained KP hierarchy, J. Math. Phys. 35 (1994), 5869-5884.
|
|