Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 13 (2017), 075, 26 pages      arXiv:1705.04005      https://doi.org/10.3842/SIGMA.2017.075

Derivations and Spectral Triples on Quantum Domains I: Quantum Disk

Slawomir Klimek a, Matt McBride b, Sumedha Rathnayake c, Kaoru Sakai a and Honglin Wang a
a) Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., Indianapolis, IN 46202, USA
b) Department of Mathematics and Statistics, Mississippi State University, 175 President's Cir., Mississippi State, MS 39762, USA
c) Department of Mathematics, University of Michigan, 530 Church St., Ann Arbor, MI 48109, USA

Received May 12, 2017, in final form September 21, 2017; Published online September 24, 2017

Abstract
We study unbounded invariant and covariant derivations on the quantum disk. In particular we answer the question whether such derivations come from operators with compact parametrices and thus can be used to define spectral triples.

Key words: invariant and covariant derivations; spectral triple; quantum disk.

pdf (424 kb)   tex (28 kb)

References

  1. Barría J., Halmos P.R., Asymptotic Toeplitz operators, Trans. Amer. Math. Soc. 273 (1982), 621-630.
  2. Battisti U., Seiler J., Boundary value problems with Atiyah-Patodi-Singer type conditions and spectral triples, J. Noncommut. Geom., to appear, arXiv:1503.02897.
  3. Booß-Bavnbek B., Wojciechowski K.P., Elliptic boundary problems for Dirac operators, Mathematics: Theory \rm & Applications, Birkhäuser Boston, Inc., Boston, MA, 1993.
  4. Bratteli O., Derivations, dissipations and group actions on $C^*$-algebras, Lecture Notes in Math., Vol. 1229, Springer-Verlag, Berlin, 1986.
  5. Bratteli O., Elliott G.A., Jorgensen P.E.T., Decomposition of unbounded derivations into invariant and approximately inner parts, J. Reine Angew. Math. 346 (1984), 166-193.
  6. Brown A., Halmos P.R., Shields A.L., Cesàro operators, Acta Sci. Math. (Szeged) 26 (1965), 125-137.
  7. Carey A.L., Klimek S., Wojciechowski K.P., A Dirac type operator on the non-commutative disk, Lett. Math. Phys. 93 (2010), 107-125.
  8. Coburn L.A., The $C^{\ast} $-algebra generated by an isometry, Bull. Amer. Math. Soc. 73 (1967), 722-726.
  9. Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
  10. Connes A., Cyclic cohomology, quantum group symmetries and the local index formula for ${\rm SU}_q(2)$, J. Inst. Math. Jussieu 3 (2004), 17-68, math.QA/0209142.
  11. D'Andrea F., Dąbrowski L., Local index formula on the equatorial Podleś sphere, Lett. Math. Phys. 75 (2006), 235-254, math.QA/0507337.
  12. Forsyth I., Goffeng M., Mesland B., Rennie A., Boundaries, spectral triples and $K$-homology, arXiv:1607.07143.
  13. Hadfield T., The noncommutative geometry of the discrete Heisenberg group, Houston J. Math. 29 (2003), 453-481.
  14. Jorgensen P., Approximately inner derivations, decompositions and vector fields of simple $C^*$-algebras, in Mappings of Operator Algebras (Philadelphia, PA, 1988), Progr. Math., Vol. 84, Birkhäuser Boston, Boston, MA, 1990, 15-113.
  15. Kadison R.V., Ringrose J.R., Fundamentals of the theory of operator algebras, Vol. II. Advanced theory, Pure and Applied Mathematics, Vol. 100, Academic Press, Inc., Orlando, FL, 1986.
  16. Klimek S., Lesniewski A., Quantum Riemann surfaces. I. The unit disc, Comm. Math. Phys. 146 (1992), 103-122.
  17. Klimek S., McBride M., d-bar operators on quantum domains, Math. Phys. Anal. Geom. 13 (2010), 357-390, arXiv:1001.2216.
  18. Klimek S., McBride M., Rathnayake S., Derivations and spectral triples on quantum domains II: Quantum annulus, in preparation.
  19. Sakai S., Operator algebras in dynamical systems, Encyclopedia of Mathematics and its Applications, Vol. 41, Cambridge University Press, Cambridge, 1991.
  20. Schechter M., Basic theory of Fredholm operators, Ann. Scuola Norm. Sup. Pisa 21 (1967), 261-280.
  21. Stacey P.J., Crossed products of $C^\ast$-algebras by $\ast$-endomorphisms, J. Austral. Math. Soc. Ser. A 54 (1993), 204-212.

Previous article  Next article   Contents of Volume 13 (2017)