|
SIGMA 14 (2018), 010, 8 pages arXiv:1711.01724
https://doi.org/10.3842/SIGMA.2018.010
Some Remarks on the Total CR $Q$ and $Q^\prime$-Curvatures
Taiji Marugame
Institute of Mathematics, Academia Sinica, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
Received November 09, 2017, in final form February 12, 2018; Published online February 14, 2018
Abstract
We prove that the total CR $Q$-curvature vanishes for any compact strictly pseudoconvex CR manifold. We also prove the formal self-adjointness of the $P^\prime$-operator and the CR invariance of the total $Q^\prime$-curvature for any pseudo-Einstein manifold without the assumption that it bounds a Stein manifold.
Key words:
CR manifolds; $Q$-curvature; $P^\prime$-operator; $Q^\prime$-curvature.
pdf (313 kb)
tex (13 kb)
References
-
Alexakis S., Hirachi K., Integral Kähler invariants and the Bergman kernel asymptotics for line bundles, Adv. Math. 308 (2017), 348-403, arXiv:1501.02463.
-
Boutet de Monvel L., Intégration des équations de Cauchy-Riemann induites formelles, in Séminaire Goulaouic-Lions-Schwartz 1974-1975; Équations aux derivées partielles linéaires et non linéaires, Centre Math., École Polytech., Paris, 1975, Exp. No. 9, 14 pages.
-
Branson T.P., The functional determinant, Lecture Notes Series, Vol. 4, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1993.
-
Branson T.P., Fontana L., Morpurgo C., Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere, Ann. of Math. 177 (2013), 1-52, arXiv:0712.3905.
-
Cao J., Chang S.C., Pseudo-Einstein and $Q$-flat metrics with eigenvalue estimates on CR-hypersurfaces, Indiana Univ. Math. J. 56 (2007), 2839-2857, math.DG/0609312.
-
Case J.S., Gover A.R., The $P^\prime$-operator, the $Q^\prime$-curvature, and the CR tractor calculus, arXiv:1709.08057.
-
Case J.S., Yang P., A Paneitz-type operator for CR pluriharmonic functions, Bull. Inst. Math. Acad. Sin. (N.S.) 8 (2013), 285-322, arXiv:1309.2528.
-
Fefferman C.L., Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. 103 (1976), 395-416.
-
Fefferman C.L., Hirachi K., Ambient metric construction of $Q$-curvature in conformal and CR geometries, Math. Res. Lett. 10 (2003), 819-831, math.DG/0303184.
-
Harvey F.R., Lawson Jr. H.B., On boundaries of complex analytic varieties. I, Ann. of Math. 102 (1975), 223-290.
-
Harvey F.R., Lawson Jr. H.B., On boundaries of complex analytic varieties. II, Ann. of Math. 106 (1977), 213-238.
-
Hirachi K., $Q$-prime curvature on CR manifolds, Differential Geom. Appl. 33 (2014), suppl., 213-245, arXiv:1302.0489.
-
Hirachi K., Marugame T., Matsumoto Y., Variation of total $Q$-prime curvature on CR manifolds, Adv. Math. 306 (2017), 1333-1376, arXiv:1510.03221.
-
Lee J.M., Pseudo-Einstein structures on CR manifolds, Amer. J. Math. 110 (1988), 157-178.
-
Seshadri N., Volume renormalization for complete Einstein-Kähler metrics, Differential Geom. Appl. 25 (2007), 356-379, math.DG/0404455.
|
|