|
SIGMA 14 (2018), 012, 33 pages arXiv:1705.09469
https://doi.org/10.3842/SIGMA.2018.012
$k$-Dirac Complexes
Tomáš Salač
Mathematical Institute, Charles University, Sokolovská 49/83, Prague, Czech Republic
Received June 01, 2017, in final form February 06, 2018; Published online February 16, 2018
Abstract
This is the first paper in a series of two papers. In this paper we construct complexes of invariant differential operators which live on homogeneous spaces of $|2|$-graded parabolic geometries of some particular type. We call them $k$-Dirac complexes. More explicitly, we will show that each $k$-Dirac complex arises as the direct image of a relative BGG sequence and so this fits into the scheme of the Penrose transform. We will also prove that each $k$-Dirac complex is formally exact, i.e., it induces a long exact sequence of infinite (weighted) jets at any fixed point. In the second part of the series we use this information to show that each $k$-Dirac complex is exact at the level of formal power series at any point and that it descends to a resolution of the $k$-Dirac operator studied in Clifford analysis.
Key words:
Penrose transform; complexes of invariant differential operators; relative BGG complexes; formal exactness; weighted jets.
pdf (615 kb)
tex (48 kb)
References
-
Baston R.J., Quaternionic complexes, J. Geom. Phys. 8 (1992), 29-52.
-
Baston R.J., Eastwood M.G., The Penrose transform. Its interaction with representation theory, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1989.
-
Bureš J., Damiano A., Sabadini I., Explicit resolutions for the complex of several Fueter operators, J. Geom. Phys. 57 (2007), 765-775.
-
Bureš J., Souček V., Complexes of invariant operators in several quaternionic variables, Complex Var. Elliptic Equ. 51 (2006), 463-485.
-
Čap A., Salač T., Parabolic conformally symplectic structures I: definition and distinguished connections, Forum Math., to appear, arXiv:1605.01161.
-
Čap A., Salač T., Parabolic conformally symplectic structures II: parabolic contactification, Ann. Mat. Pura Appl., to appear, arXiv:1605.01897.
-
Čap A., Salač T., Parabolic conformally symplectic structures III: invariant differential operators and complexes, arXiv:1701.01306.
-
Čap A., Slovák J., Parabolic geometries. I. Background and general theory, Mathematical Surveys and Monographs, Vol. 154, Amer. Math. Soc., Providence, RI, 2009.
-
Čap A., Slovák J., Souček V., Bernstein-Gelfand-Gelfand sequences, Ann. of Math. 154 (2001), 97-113, math.DG/0001164.
-
Čap A., Souček V., Relative BGG sequences: I. Algebra, J. Algebra 463 (2016), 188-210, arXiv:1510.03331.
-
Čap A., Souček V., Relative BGG sequences: II. BGG machinery and invariant operators, Adv. Math. 320 (2017), 1009-1062, arXiv:1510.03986.
-
Colombo F., Sabadini I., Sommen F., Struppa D.C., Analysis of Dirac systems and computational algebra, Progress in Mathematical Physics, Vol. 39, Birkhäuser Boston, Inc., Boston, MA, 2004.
-
Colombo F., Souček V., Struppa D.C., Invariant resolutions for several Fueter operators, J. Geom. Phys. 56 (2006), 1175-1191.
-
Franek P., Generalized Dolbeault sequences in parabolic geometry, J. Lie Theory 18 (2008), 757-774, arXiv:0710.0093.
-
Goodman R., Wallach N.R., Symmetry, representations, and invariants, Graduate Texts in Mathematics, Vol. 255, Springer, Dordrecht, 2009.
-
Hörmander L., An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J. - Toronto, Ont. - London, 1966.
-
Krump L., A resolution for the Dirac operator in four variables in dimension 6, Adv. Appl. Clifford Algebr. 19 (2009), 365-374.
-
Morimoto T., Lie algebras, geometric structures and differential equations on filtered manifolds, in Lie Groups, Geometric Structures and Differential Equations - One Hundred Years After Sophus Lie (Kyoto/Nara, 1999), Adv. Stud. Pure Math., Vol. 37, Math. Soc. Japan, Tokyo, 2002, 205-252.
-
Nacinovich M., Complex analysis and complexes of differential operators, in Complex Analysis (Trieste, 1980), Lecture Notes in Math., Vol. 950, Springer, Berlin - New York, 1982, 105-195.
-
Sabadini I., Struppa D.C., Sommen F., Van Lancker P., Complexes of Dirac operators in Clifford algebras, Math. Z. 239 (2002), 293-320.
-
Salač T., $k$-Dirac operator and the Cartan-Kähler theorem, Arch. Math. (Brno) 49 (2013), 333-346, arXiv:1304.0956.
-
Salač T., $k$-Dirac operator and parabolic geometries, Complex Anal. Oper. Theory 8 (2014), 383-408, arXiv:1201.0355.
-
Salač T., $k$-Dirac operator and the Cartan-Kähler theorem for weighted differential operators, Differential Geom. Appl. 49 (2016), 351-371, arXiv:1601.08077.
-
Salač T., Resolution of the $k$-Dirac operator, Adv. Appl. Clifford Algebr. 28 (2018), 28:3, 19 pages, arXiv:1705.10168.
-
Spencer D.C., Overdetermined systems of linear partial differential equations, Bull. Amer. Math. Soc. 75 (1969), 179-239.
-
Ward R.S., Wells Jr. R.O., Twistor geometry and field theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1990.
-
Wells Jr. R.O., Differential analysis on complex manifolds, Graduate Texts in Mathematics, Vol. 65, 2nd ed., Springer-Verlag, New York - Berlin, 1980.
|
|