|
SIGMA 14 (2018), 017, 19 pages arXiv:1712.01549
https://doi.org/10.3842/SIGMA.2018.017
Evolutionary Hirota Type (2+1)-Dimensional Equations: Lax Pairs, Recursion Operators and Bi-Hamiltonian Structures
Mikhail B. Sheftel a and Devrim Yazıcı b
a) Department of Physics, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
b) Department of Physics, Yıldız Technical University, Esenler, 34220 Istanbul, Turkey
Received December 06, 2017, in final form March 02, 2018; Published online March 07, 2018
Abstract
We show that evolutionary Hirota type Euler-Lagrange equations in $(2+1)$ dimensions have a symplectic Monge-Ampère form. We consider integrable equations of this type in the sense that they admit infinitely many hydrodynamic reductions and determine Lax pairs for them. For two seven-parameter families of integrable equations converted to two-component form we have constructed Lagrangians, recursion operators and bi-Hamiltonian representations. We have also presented a six-parameter family of tri-Hamiltonian systems.
Key words:
Lax pair; recursion operator; Hamiltonian operator; bi-Hamiltonian system.
pdf (400 kb)
tex (21 kb)
References
-
Dirac P.A.M., Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series, Vol. 2, Belfer Graduate School of Science, New York, 1967.
-
Doubrov B., Ferapontov E.V., On the integrability of symplectic Monge-Ampère equations, J. Geom. Phys. 60 (2010), 1604-1616, arXiv:0910.3407.
-
Ferapontov E.V., Hadjikos L., Khusnutdinova K.R., Integrable equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian Grassmannian, Int. Math. Res. Not. 2010 (2010), 496-535, arXiv:0705.1774.
-
Ferapontov E.V., Khusnutdinova K.R., Hydrodynamic reductions of multidimensional dispersionless PDEs: the test for integrability, J. Math. Phys. 45 (2004), 2365-2377, nlin.SI/0312015.
-
Ferapontov E.V., Khusnutdinova K.R., On the integrability of $(2+1)$-dimensional quasilinear systems, Comm. Math. Phys. 248 (2004), 187-206, nlin.SI/0305044.
-
Ferapontov E.V., Kruglikov B., Novikov V., Integrability of dispersionless Hirota type equations in 4D and the symplectic Monge-Ampère property, arXiv:1707.08070.
-
Fuchssteiner B., Fokas A.S., Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D 4 (1981), 47-66.
-
Guthrie G.A., Recursion operators and non-local symmetries, Proc. Roy. Soc. London Ser. A 446 (1994), 107-114.
-
Krasil'shchik J., Verbovetsky A., Geometry of jet spaces and integrable systems, J. Geom. Phys. 61 (2011), 1633-1674, arXiv:1002.0077.
-
Magri F., A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), 1156-1162.
-
Magri F., A geometrical approach to the nonlinear solvable equations, in Nonlinear Evolution Equations and Dynamical Systems (Proc. Meeting, Univ. Lecce, Lecce, 1979), Lecture Notes in Phys., Vol. 120, Springer, Berlin-New York, 1980, 233-263.
-
Marvan M., Another look on recursion operators, in Differential Geometry and Applications (Brno, 1995), Masaryk University, Brno, 1996, 393-402.
-
Neyzi F., Nutku Y., Sheftel M.B., Multi-Hamiltonian structure of Plebanski's second heavenly equation, J. Phys. A: Math. Gen. 38 (2005), 8473-8485, nlin.SI/0505030.
-
Olver P.J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, New York, 1986.
-
Papachristou C.J., Potential symmetries for self-dual gauge fields, Phys. Lett. A 145 (1990), 250-254.
-
Sergyeyev A., A simple construction of recursion operators for multidimensional dispersionless integrable systems, J. Math. Anal. Appl. 454 (2017), 468-480, arXiv:1501.01955.
-
Sheftel M.B., Yazıcı D., Recursion operators and tri-Hamiltonian structure of the first heavenly equation of Plebański, SIGMA 12 (2016), 091, 17 pages, arXiv:1605.07770.
-
Sheftel M.B., Yazıcı D., Malykh A.A., Recursion operators and bi-Hamiltonian structure of the general heavenly equation, J. Geom. Phys. 116 (2017), 124-139, arXiv:1510.03666.
|
|