|
SIGMA 14 (2018), 020, 9 pages arXiv:1710.06091
https://doi.org/10.3842/SIGMA.2018.020
Contribution to the Special Issue on Symmetries and Integrability of Difference Equations
Special Solutions of Bi-Riccati Delay-Differential Equations
Bjorn K. Berntson
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
Received May 15, 2017, in final form March 02, 2018; Published online March 09, 2018
Abstract
Delay-differential equations are functional differential equations that involve shifts and derivatives with respect to a single independent variable. Some integrability candidates in this class have been identified by various means. For three of these equations we consider their elliptic and soliton-type solutions. Using Hirota's bilinear method, we find that two of our equations possess three-soliton-type solutions.
Key words:
delay-differential equations; elliptic solutions; solitons.
pdf (280 kb)
tex (13 kb)
References
-
Ablowitz M.J., Satsuma J., Solitons and rational solutions of nonlinear evolution equations, J. Math. Phys. 19 (1978), 2180-2186.
-
Babalic C.N., Carstea A.S., On some new forms of lattice integrable equations, Cent. Eur. J. Phys. 12 (2014), 341-347, arXiv:1508.04998.
-
Berntson B.K., Integrable delay-differential equations, Ph.D. Thesis, University College London, 2017.
-
Berntson B.K., Halburd R., Integrable delay-differential equations, in preparation.
-
Brezhnev Y., Leble S., On integration of the closed KdV dressing chain, math-ph/0502052.
-
Carstea A.S., Bilinear approach to delay-Painlevé equations, J. Phys. A: Math. Theor. 44 (2011), 105202, 7 pages.
-
Dai C.Q., Cen X., Wu S.S., Exact travelling wave solutions of the discrete sine-Gordon equation obtained via the exp-function method, Nonlinear Anal. 70 (2009), 58-63.
-
Grammaticos B., Ramani A., Moreira I.C., Delay-differential equations and the Painlevé transcendents, Phys. A 196 (1993), 574-590.
-
Hietarinta J., Introduction to the Hirota bilinear method, in Integrability of Nonlinear Systems (Pondicherry, 1996), Lecture Notes in Phys., Vol. 495, Springer, Berlin, 1997, 95-103, solv-int/9708006.
-
Hille E., Analytic function theory, Vol. I, AMS Chelsea Publishing Series, Vol. 269, Amer. Math. Soc., Providence, RI, 2012.
-
Joshi N., Direct `delay' reductions of the Toda equation, J. Phys. A: Math. Theor. 42 (2009), 022001, 8 pages, arXiv:0810.5581.
-
Quispel G.R.W., Capel H.W., Sahadevan R., Continuous symmetries of differential-difference equations: the Kac-van Moerbeke equation and Painlevé reduction, Phys. Lett. A 170 (1992), 379-383.
-
Quispel G.R.W., Roberts J.A.G., Thompson C.J., Integrable mappings and soliton equations, Phys. Lett. A 126 (1988), 419-421.
-
Ramani A., Grammaticos B., Tamizhmani K.M., Painlevé analysis and singularity confinement: the ultimate conjecture, J. Phys. A: Math. Gen. 26 (1993), L53-L58.
-
vom Hofe R., Grundvorstellungen mathematischer Inhalte, Texte zur Didaktik der Mathematik, Spektrum Akademischer Verlag GmbH, Heidelberg, 1995.
|
|