|
SIGMA 14 (2018), 033, 5 pages arXiv:1711.06009
https://doi.org/10.3842/SIGMA.2018.033
Contribution to the Special Issue on the Representation Theory of the Symmetric Groups and Related Topics
The Duals of the 2-Modular Irreducible Modules of the Alternating Groups
John Murray
Department of Mathematics & Statistics, Maynooth University, Co. Kildare, Ireland
Received January 04, 2018, in final form April 04, 2018; Published online April 17, 2018
Abstract
We determine the dual modules of all irreducible modules of alternating groups over fields of characteristic 2.
Key words:
symmetric group; alternating group; dual module; irreducible module; characteristic 2.
pdf (265 kb)
tex (10 kb)
References
-
Benson D., Spin modules for symmetric groups, J. London Math. Soc. 38 (1988), 250-262.
-
Bessenrodt C., On the representation theory of alternating groups, Algebra Colloq. 10 (2003), 241-250.
-
Brauer R., On the connection between the ordinary and the modular characters of groups of finite order, Ann. of Math. 42 (1941), 926-935.
-
Brauer R., Nesbitt C., On the modular characters of groups, Ann. of Math. 42 (1941), 556-590.
-
Bressoud D.M., A combinatorial proof of Schur's 1926 partition theorem, Proc. Amer. Math. Soc. 79 (1980), 338-340.
-
Ford B., Kleshchev A.S., A proof of the Mullineux conjecture, Math. Z. 226 (1997), 267-308.
-
James G.D., The representation theory of the symmetric groups, Lecture Notes in Math., Vol. 682, Springer, Berlin, 1978.
-
James G.D., Kerber A., The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, Vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981.
-
Schur I., Zur additiven Zahlentheorie, Sitzungsber. Preuß. Akad. Wiss. Phys.-Math. Kl. (1926), 488-495, Reprinted in Schur I., Gesammelte Abhandlungen, Band III, Springer-Verlag, Berlin - New York, 1973, 43-50.
|
|