|
SIGMA 14 (2018), 034, 21 pages arXiv:1610.09620
https://doi.org/10.3842/SIGMA.2018.034
Results Concerning Almost Complex Structures on the Six-Sphere
Scott O. Wilson
Department of Mathematics, Queens College, City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA
Received November 20, 2017, in final form April 09, 2018; Published online April 17, 2018
Abstract
For the standard metric on the six-dimensional sphere, with Levi-Civita connection $\nabla$, we show there is no almost complex structure $J$ such that $\nabla_X J$ and $\nabla_{JX} J$ commute for every $X$, nor is there any integrable $J$ such that $\nabla_{JX} J = J \nabla_X J$ for every $X$. The latter statement generalizes a previously known result on the non-existence of integrable orthogonal almost complex structures on the six-sphere. Both statements have refined versions, expressed as intrinsic first order differential inequalities depending only on $J$ and the metric. The new techniques employed include an almost-complex analogue of the Gauss map, defined for any almost complex manifold in Euclidean space.
Key words:
six-sphere; almost complex; integrable.
pdf (412 kb)
tex (24 kb)
References
-
Blanchard A., Recherche de structures analytiques complexes sur certaines variétés, C. R. Acad. Sci. Paris 236 (1953), 657-659.
-
Bor G., Hernández-Lamoneda L., The canonical bundle of a Hermitian manifold, Bol. Soc. Mat. Mexicana 5 (1999), 187-198.
-
Borel A., Serre J.P., Détermination des $p$-puissances réduites de Steenrod dans la cohomologie des groupes classiques. Applications, C. R. Acad. Sci. Paris 233 (1951), 680-682.
-
Bryant R., S.-S. Chern's study of almost-complex structures on the six-sphere, arXiv:1405.3405.
-
Hopf H., Zur Topologie der komplexen Mannigfaltigkeiten, in Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, 1948, 167-185.
-
Karoubi M., Leruste C., Algebraic topology via differential geometry, London Mathematical Society Lecture Note Series, Vol. 99, Cambridge University Press, Cambridge, 1987.
-
LeBrun C., Orthogonal complex structures on $S^6$, Proc. Amer. Math. Soc. 101 (1987), 136-138.
-
McDuff D., Salamon D., $J$-holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications, Vol. 52, 2nd ed., Amer. Math. Soc., Providence, RI, 2012.
-
Milnor J.W., Stasheff J.D., Characteristic classes, Annals of Mathematics Studies, Vol. 76, Princeton University Press, Princeton, N.J., University of Tokyo Press, Tokyo, 1974.
-
Newlander A., Nirenberg L., Complex analytic coordinates in almost complex manifolds, Ann. of Math. 65 (1957), 391-404.
-
Salamon S.M., Hermitian geometry, in Invitations to Geometry and Topology, Oxford Graduate Texts in Mathematics, Vol. 7, Oxford University Press, Oxford, 2002, 233-291.
-
Tang Z., Curvature and integrability of an almost Hermitian structure, Internat. J. Math. 17 (2006), 97-105, .
|
|