|
SIGMA 14 (2018), 035, 13 pages arXiv:1707.05216
https://doi.org/10.3842/SIGMA.2018.035
On Basic Fourier-Bessel Expansions
José Luis Cardoso
Mathematics Department, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
Received September 27, 2017, in final form April 11, 2018; Published online April 17, 2018
Abstract
When dealing with Fourier expansions using the third Jackson (also known as Hahn-Exton) $q$-Bessel function, the corresponding positive zeros $j_{k\nu}$ and the ''shifted'' zeros, $qj_{k\nu}$, among others, play an essential role. Mixing classical analysis with $q$-analysis we were able to prove asymptotic relations between those zeros and the ''shifted'' ones, as well as the asymptotic behavior of the third Jackson $q$-Bessel function when computed on the ''shifted'' zeros. A version of a $q$-analogue of the Riemann-Lebesgue theorem within the scope of basic Fourier-Bessel expansions is also exhibited.
Key words:
third Jackson $q$-Bessel function; Hahn-Exton $q$-Bessel function; basic Fourier-Bessel expansions; basic hypergeometric function; asymptotic behavior; Riemann-Lebesgue theorem.
pdf (393 kb)
tex (19 kb)
References
-
Abreu L.D., Completeness, special functions and uncertainty principles over $q$-linear grids, J. Phys. A: Math. Gen. 39 (2006), 14567-14580, math.CA/0602440.
-
Abreu L.D., Functions $q$-orthogonal with respect to their own zeros, Proc. Amer. Math. Soc. 134 (2006), 2695-2701.
-
Abreu L.D., Bustoz J., On the completeness of sets of $q$-Bessel functions $J_\nu^{(3)}(x;q)$, in Theory and Applications of Special Functions, Dev. Math., Vol. 13, Springer, New York, 2005, 29-38.
-
Abreu L.D., Bustoz J., Cardoso J.L., The roots of the third Jackson $q$-Bessel function, Int. J. Math. Math. Sci. (2003), 4241-4248.
-
Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.
-
Annaby M.H., $q$-type sampling theorems, Results Math. 44 (2003), 214-225.
-
Annaby M.H., Mansour Z.S., On the zeros of the second and third Jackson $q$-Bessel functions and their associated $q$-Hankel transforms, Math. Proc. Cambridge Philos. Soc. 147 (2009), 47-67.
-
Bettaibi N., Bouzeffour F., Ben Elmonser H., Binous W., Elements of harmonic analysis related to the third basic zero order Bessel function, J. Math. Anal. Appl. 342 (2008), 1203-1219.
-
Bustoz J., Cardoso J.L., Basic analog of Fourier series on a $q$-linear grid, J. Approx. Theory 112 (2001), 134-157.
-
Bustoz J., Suslov S.K., Basic analog of Fourier series on a $q$-quadratic grid, Methods Appl. Anal. 5 (1998), 1-38, math.CA/9706216.
-
Cardoso J.L., Basic Fourier series in a $q$-linear grid: convergence theorems, J. Math. Anal. Appl. 323 (2006), 313-330.
-
Cardoso J.L., Basic Fourier series: convergence on and outside the $q$-linear grid, J. Fourier Anal. Appl. 17 (2011), 96-114, math.CA/0605764.
-
Cardoso J.L., A few properties of the third Jackson $q$-Bessel function, Anal. Math. 42 (2016), 323-337.
-
Cardoso J.L., Petronilho J., Variations around Jackson's quantum operator, Methods Appl. Anal. 22 (2015), 343-358.
-
Cieśliński J.L., Improved $q$-exponential and $q$-trigonometric functions, Appl. Math. Lett. 24 (2011), 2110-2114, arXiv:1006.5652.
-
Elmonser H., Sellami M., Fitouhi A., Inequalities related to the third Jackson $q$-Bessel function of order zero, J. Inequal. Appl. 2013 (2013), 2013:289, 22 pages.
-
Exton H., A basic analogue of the Bessel-Clifford equation, J\ n\=an\=abha 8 (1978), 49-56.
-
Exton H., $q$-hypergeometric functions and applications, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, Halsted Press, New York, 1983.
-
Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge, 1990.
-
Hardy G.H., Notes on special systems of orthogonal functions (II): on functions orthogonal with respect to their own zeros, J. London Math. Soc. 14 (1939), 37-44.
-
Hayman W.K., On the zeros of a $q$-Bessel function, in Complex analysis and dynamical systems II, Contemp. Math., Vol. 382, Amer. Math. Soc., Providence, RI, 2005, 205-216.
-
Koelink H.T., Swarttouw R.F., On the zeros of the Hahn-Exton $q$-Bessel function and associated $q$-Lommel polynomials, J. Math. Anal. Appl. 186 (1994), 690-710.
-
Koornwinder T.H., Swarttouw R.F., On $q$-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333 (1992), 445-461.
-
Olde Daalhuis A.B., Asymptotic expansions for $q$-gamma, $q$-exponential, and $q$-Bessel functions, J. Math. Anal. Appl. 186 (1994), 896-913.
-
Suslov S.K., ''Addition'' theorems for some $q$-exponential and $q$-trigonometric functions, Methods Appl. Anal. 4 (1997), 11-32.
-
Suslov S.K., An introduction to basic Fourier series, Developments in Mathematics, Vol. 9, Kluwer Academic Publishers, Dordrecht, 2003.
-
Swarttouw R.F., The Hahn-Exton $q$-Bessel function, Ph.D. Thesis, Technische Universiteit Delft, 1992.
-
Štampach F., Nevanlinna extremal measures for polynomials related to $q^{-1}$-Fibonacci polynomials, Adv. in Appl. Math. 78 (2016), 56-75.
-
Štampach F., Štovíček P., The Nevanlinna parametrization for $q$-Lommel polynomials in the indeterminate case, J. Approx. Theory 201 (2016), 48-72, arXiv:1407.0217.
-
Watson G.N., A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, The Macmillan Company, New York, 1944.
-
Wilcox H.J., Myers D.L., An introduction to Lebesgue integration and Fourier series, Dover Publications, Inc., New York, 1994.
|
|