|
SIGMA 14 (2018), 073, 9 pages arXiv:1804.06749
https://doi.org/10.3842/SIGMA.2018.073
Contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications (OPSFA14)
Asymptotic Expansions of Jacobi Polynomials for Large Values of $\beta$ and of Their Zeros
Amparo Gil a, Javier Segura a and Nico M. Temme c
a) Departamento de Matemática Aplicada y CC, de la Computación, ETSI Caminos, Universidad de Cantabria, 39005-Santander, Spain
b) Departamento de Matemáticas, Estadistica y Computación, Universidad de Cantabria, 39005 Santander, Spain
c) IAA, 1825 BD 25, Alkmaar, The Netherlands
Former address: Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098 XG Amsterdam, The Netherlands
Received April 19, 2018, in final form July 12, 2018; Published online July 17, 2018
Abstract
Asymptotic approximations of Jacobi polynomials are given for large values of the $\beta$-parameter and of their zeros. The expansions are given in terms of Laguerre polynomials and of their zeros. The levels of accuracy of the approximations are verified by numerical examples.
Key words:
Jacobi polynomial; large-beta asymptotics; Laguerre polynomial.
pdf (312 kb)
tex (11 kb)
References
-
Dimitrov D.K., dos Santos E.J.C., Asymptotic behaviour of Jacobi polynomials and their zeros, Proc. Amer. Math. Soc. 144 (2016), 535-545.
-
Gil A., Segura J., Temme N.M., Asymptotic approximations to the nodes and weights of Gauss-Hermite and Gauss-Laguerre quadratures, Stud. Appl. Math. 140 (2018), 298-332, arXiv:1709.09656.
-
Gil A., Segura J., Temme N.M., Non-iterative computation of Gauss-Jacobi quadrature by asymptotic expansions for large degree, arXiv:1804.07076.
-
Koornwinder T.H., Wong R., Koekoek R., Swarttouw R.F., Orthogonal polynomials, in NIST Handbook of Mathematical Functions, U.S. Dept. Commerce, Washington, DC, 2010, 435-484, available at https://dlmf.nist.gov/18.
|
|