|
SIGMA 14 (2018), 080, 50 pages arXiv:1704.02542
https://doi.org/10.3842/SIGMA.2018.080
Differential Geometric Aspects of Causal Structures
Omid Makhmali
Institute of Mathematics, Polish Academy of Sciences, 8 Śniadeckich Str., 00-656 Warszawa, Poland
Received April 25, 2017, in final form July 23, 2018; Published online August 02, 2018
Abstract
This article is concerned with causal structures, which are defined as a field of tangentially non-degenerate projective hypersurfaces in the projectivized tangent bundle of a manifold. The local equivalence problem of causal structures on manifolds of dimension at least four is solved using Cartan's method of equivalence, leading to an $\{e\}$-structure over some principal bundle. It is shown that these structures correspond to parabolic geometries of type $(D_n,P_{1,2})$ and $(B_{n-1},P_{1,2})$, when $n\geq 4$, and $(D_3,P_{1,2,3})$. The essential local invariants are determined and interpreted geometrically. Several special classes of causal structures are considered including those that are a lift of pseudo-conformal structures and those referred to as causal structures with vanishing Wsf curvature. A twistorial construction for causal structures with vanishing Wsf curvature is given.
Key words:
causal geometry; conformal geometry; equivalence method; Cartan connection; parabolic geometry.
pdf (810 kb)
tex (104 kb)
References
-
Aazami A.B., Javaloyes M.A., Penrose's singularity theorem in a Finsler spacetime, Classical Quantum Gravity 33 (2016), 025003, 22 pages, arXiv:1410.7595.
-
Agrachev A.A., Zelenko I., Geometry of Jacobi curves. I, J. Dynam. Control Systems 8 (2002), 93-140.
-
Akivis M.A., Goldberg V.V., Projective differential geometry of submanifolds, North-Holland Mathematical Library, Vol. 49, North-Holland Publishing Co., Amsterdam, 1993.
-
Akivis M.A., Goldberg V.V., Conformal differential geometry and its generalizations, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1996.
-
Alexandrov A.D., A contribution to chronogeometry, Canad. J. Math. 19 (1967), 1119-1128.
-
Anderson I., Nie Z., Nurowski P., Non-rigid parabolic geometries of Monge type, Adv. Math. 277 (2015), 24-55, arXiv:1401.2174.
-
Bao D., Chern S.-S., Shen Z., An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, Vol. 200, Springer-Verlag, New York, 2000.
-
Bao D., Robles C., Shen Z., Zermelo navigation on Riemannian manifolds, J. Differential Geom. 66 (2004), 377-435, math.DG/0311233.
-
Beem J.K., Ehrlich P.E., Easley K.L., Global Lorentzian geometry, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 202, 2nd ed., Marcel Dekker, Inc., New York, 1996.
-
Belgun F.A., Null-geodesics in complex conformal manifolds and the LeBrun correspondence, J. Reine Angew. Math. 536 (2001), 43-63, math.DG/0002225.
-
Bryant R.L., Some remarks on Finsler manifolds with constant flag curvature, Houston J. Math. 28 (2002), 221-262, math.DG/0107228.
-
Čap A., Correspondence spaces and twistor spaces for parabolic geometries, J. Reine Angew. Math. 582 (2005), 143-172, math.DG/0102097.
-
Čap A., Schichl H., Parabolic geometries and canonical Cartan connections, Hokkaido Math. J. 29 (2000), 453-505.
-
Čap A., Slovák J., Parabolic geometries. I. Background and general theory, Mathematical Surveys and Monographs, Vol. 154, Amer. Math. Soc., Providence, RI, 2009.
-
Cartan É., Sur un problème d'équivalence et la théorie des espaces métriques généralisés, Mathematica 4 (1930), 114-136.
-
Cartan É., Les espaces de Finsler, Hermann, Paris, 1934.
-
Chern S.-S., The geometry of the differential equation $y'''=F(x,y,y',y'')$, Sci. Rep. Nat. Tsing Hua Univ. Ser. A 4 (1940), 97-111.
-
Chern S.-S., Local equivalence and Euclidean connections in Finsler spaces, Sci. Rep. Nat. Tsing Hua Univ. Ser. A 5 (1948), 95-121.
-
Daigneault A., Sangalli A., Einstein's static universe: an idea whose time has come back?, Notices Amer. Math. Soc. 48 (2001), 9-16.
-
Doubrov B., Zelenko I., Prolongation of quasi-principal frame bundles and geometry of flag structures on manifolds, arXiv:1210.7334.
-
Ehlers J., Pirani F.A.E., Schild A., The geometry of free fall and light propagation, in General Relativity (papers in honour of J.L. Synge), Clarendon Press, Oxford, 1972, 63-84.
-
Fox D.J.F., Contact path geometries, math.DG/0508343.
-
Fox D.J.F., Contact projective structures, Indiana Univ. Math. J. 54 (2005), 1547-1598, math.DG/0402332.
-
García-Parrado A., Senovilla J.M.M., Causal structures and causal boundaries, Classical Quantum Gravity 22 (2005), R1-R84, gr-qc/0501069.
-
Gardner R.B., The method of equivalence and its applications, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 58, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989.
-
Godlinski M., Nurowski P., Geometry of third-order ODEs, arXiv:0902.4129.
-
Griffiths P.A., Exterior differential systems and the calculus of variations, Progress in Mathematics, Vol. 25, Birkhäuser, Boston, Mass., 1983.
-
Grossman D.A., Torsion-free path geometries and integrable second order ODE systems, Selecta Math. (N.S.) 6 (2000), 399-442.
-
Guillemin V., Cosmology in $(2 + 1)$-dimensions, cyclic models, and deformations of $M_{2,1}$, Annals of Mathematics Studies, Vol. 121, Princeton University Press, Princeton, NJ, 1989.
-
Guts A.K., Axiomatic causal theory of space-time, Gravitation Cosmology 1 (1195), 211-215.
-
Hawking S.W., Ellis G.F.R., The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, Vol. 1, Cambridge University Press, London - New York, 1973.
-
Hilgert J., Ólafsson G., Causal symmetric spaces: geometry and harmonic analysis, Perspectives in Mathematics, Vol. 18, Academic Press, Inc., San Diego, CA, 1997.
-
Holland J., Sparling G., Causal geometries and third-order ordinary differential equations, arXiv:1001.0202.
-
Holland J., Sparling G., Causal geometries, null geodesics, and gravity, arXiv:1106.5254.
-
Hsu L., Calculus of variations via the Griffiths formalism, J. Differential Geom. 36 (1992), 551-589.
-
Hwang J.-M., Geometry of varieties of minimal rational tangents, in Current Developments in Algebraic Geometry, Math. Sci. Res. Inst. Publ., Vol. 59, Cambridge University Press, Cambridge, 2012, 197-226.
-
Hwang J.-M., Varieties of minimal rational tangents of codimension 1, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), 629-649.
-
Ivey T.A., Landsberg J.M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, Vol. 61, Amer. Math. Soc., Providence, RI, 2003.
-
Kronheimer E.H., Penrose R., On the structure of causal spaces, Proc. Cambridge Philos. Soc. 63 (1967), 481-501.
-
Kruglikov B., The D., The gap phenomenon in parabolic geometries, J. Reine Angew. Math. 723 (2017), 153-215, arXiv:1303.1307.
-
LeBrun C.R., Spaces of complex null geodesics in complex-Riemannian geometry, Trans. Amer. Math. Soc. 278 (1983), 209-231.
-
LeBrun C.R., Twistors, ambitwistors, and conformal gravity, in Twistors in Mathematics and Physics, London Math. Soc. Lecture Note Ser., Vol. 156, Cambridge University Press, Cambridge, 1990, 71-86.
-
Levichev A.V., Segal's chronometric theory as a completion of the special theory of relativity, Russian Phys. J. 36 (1993), 780-783.
-
Libermann P., Marle C.M., Symplectic geometry and analytical mechanics, Mathematics and its Applications, Vol. 35, D. Reidel Publishing Co., Dordrecht, 1987.
-
Low R.J., The space of null geodesics (and a new causal boundary), in Analytical and Numerical Approaches to Mathematical Relativity, Lecture Notes in Phys., Vol. 692, Springer, Berlin, 2006, 35-50.
-
Makhmali O., Differential geometric aspects of causal structures, Ph.D. Thesis, McGill University, 2016.
-
Mettler T., Reduction of $\beta$-integrable 2-Segre structures, Comm. Anal. Geom. 21 (2013), 331-353, arXiv:1110.3279.
-
Minguzzi E., Raychaudhuri equation and singularity theorems in Finsler spacetimes, Classical Quantum Gravity 32 (2015), 185008, 26 pages, arXiv:1502.02313.
-
Miyaoka R., Lie contact structures and normal Cartan connections, Kodai Math. J. 14 (1991), 13-41.
-
Morimoto T., Geometric structures on filtered manifolds, Hokkaido Math. J. 22 (1993), 263-347.
-
Olver P.J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995.
-
O'Neill B., Semi-Riemannian geometry: with applications to relativity, Pure and Applied Mathematics, Vol. 103, Academic Press, Inc., New York, 1983.
-
Penrose R., Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14 (1965), 57-59.
-
Penrose R., Techniques of differential topology in relativity, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1972.
-
Rund H., Congruences of null-extremals in the calculus of variations, J. Nat. Acad. Math. India 1 (1983), 165-178.
-
Rund H., Null-distributions in the calculus of variations of multiple integrals, Math. Colloq. Univ. Cape Town 13 (1984), 57-81.
-
Sachs R., Gravitational waves in general relativity. VI. The outgoing radiation condition, Proc. Roy. Soc. Ser. A 264 (1961), 309-338.
-
Sasaki T., Projective differential geometry and linear homogeneous differential equations, Department of Mathematics, Kobe University, 1999.
-
Sato H., Yamaguchi K., Lie contact manifolds, in Geometry of Manifolds (Matsumoto, 1988), Perspect. Math., Vol. 8, Academic Press, Boston, MA, 1989, 191-238.
-
Sato H., Yoshikawa A.Y., Third order ordinary differential equations and Legendre connections, J. Math. Soc. Japan 50 (1998), 993-1013.
-
Schapira P., Hyperbolic systems and propagation on causal manifolds, Lett. Math. Phys. 103 (2013), 1149-1164, arXiv:1305.3535.
-
Segal I.E., Mathematical cosmology and extragalactic astronomy, Pure and Applied Mathematics, Vol. 68, Academic Press, New York - London, 1976.
-
Shen Z., Differential geometry of spray and Finsler spaces, Kluwer Academic Publishers, Dordrecht, 2001.
-
Struik D.J., Lectures on classical differential geometry, 2nd ed., Dover Publications, Inc., New York, 1988.
-
Tanaka N., On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J. 8 (1979), 23-84.
-
Taub A.H., Book Review: Mathematical cosmology and extragalactic astronomy, Bull. Amer. Math. Soc. 83 (1977), 705-711.
-
Wormald L.I., A critique of Segal's chronometric theory, Gen. Relativity Gravitation 16 (1984), 393-401.
-
Yamaguchi K., Differential systems associated with simple graded Lie algebras, in Progress in Differential Geometry, Adv. Stud. Pure Math., Vol. 22, Math. Soc. Japan, Tokyo, 1993, 413-494.
-
Ye Y.G., Extremal rays and null geodesics on a complex conformal manifold, Internat. J. Math. 5 (1994), 141-168, alg-geom/9206004.
-
Zadnik V., Lie contact structures and chains, arXiv:0901.4433.
-
Zelenko I., On Tanaka's prolongation procedure for filtered structures of constant type, SIGMA 5 (2009), 094, 21 pages, arXiv:0906.0560.
|
|