|
SIGMA 14 (2018), 093, 24 pages arXiv:1809.02311
https://doi.org/10.3842/SIGMA.2018.093
Contribution to the Special Issue on Painlevé Equations and Applications in Memory of Andrei Kapaev
A Riemann-Hilbert Approach to the Heun Equation
Boris Dubrovin a and Andrei Kapaev b
a) SISSA, Via Bonomea 265, 34136, Trieste, Italy
b) Deceased
Received February 07, 2018, in final form August 15, 2018; Published online September 07, 2018
Abstract
We describe the close connection between the linear system for the sixth Painlevé equation and the general Heun equation, formulate the Riemann-Hilbert problem for the Heun functions and show how, in the case of reducible monodromy, the Riemann-Hilbert formalism can be used to construct explicit polynomial solutions of the Heun equation.
Key words:
Heun polynomials; Riemann-Hilbert problem; Painlevé equations.
pdf (570 kb)
tex (88 kb)
References
-
Arscott F.M., Darai A., Curvilinear coordinate systems in which the Helmholtz equation separates, IMA J. Appl. Math. 27 (1981), 33-70.
-
Boalch P., From Klein to Painlevé via Fourier, Laplace and Jimbo, Proc. London Math. Soc. 90 (2005), 167-208, math.AG/0308221.
-
Dubrovin B., Mazzocco M., Monodromy of certain Painlevé-VI transcendents and reflection groups, Invent. Math. 141 (2000), 55-147, math.AG/9806056.
-
Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, McGraw-Hill, New York, 1953.
-
Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Yu., Painlevé transcendents. The Riemann-Hilbert approach, Mathematical Surveys and Monographs, Vol. 128, Amer. Math. Soc., Providence, RI, 2006.
-
Fokas A.S., Its A.R., Kitaev A.V., The isomonodromy approach to matrix models in $2$D quantum gravity, Comm. Math. Phys. 147 (1992), 395-430.
-
Fuchs R., Sur quelques équations différentielles linéaires du second ordre, C. R. Acad. Sci. Paris 141 (1906), 555-558.
-
Fuchs R., Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Ann. 63 (1907), 301-321.
-
Garnier R., Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes, Ann. Sci. École Norm. Sup. 29 (1912), 1-126.
-
Garnier R., Étude de l'intégrale générale de l'équation VI de M. Painlevé dans le voisinage de ses singularités transcendantes, Ann. Sci. École Norm. Sup. 34 (1917), 239-353.
-
Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Studies in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin, 2002.
-
Guzzetti D., Pole distribution of PVI transcendents close to a critical point, Phys. D 241 (2012), 2188-2203, arXiv:1104.5066.
-
Guzzetti D., Tabulation of Painlevé 6 transcendents, Nonlinearity 25 (2012), 3235-3276, arXiv:1108.3401.
-
Heun K., Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten, Math. Ann. 33 (1888), 161-179.
-
Hortaçsu M., Heun functions and their uses in physics, in Proceedings of the 13th Regional Conference on Mathematical Physics (October 27-31, 2010, Antalya, Turkey), Editors U. Camci, I. Semi, World Sci. Publ., Hackensack, NJ, 2013, 23-39, arXiv:1101.0471.
-
Iwasaki K., An area-preserving action of the modular group on cubic surfaces and the Painlevé VI equation, Comm. Math. Phys. 242 (2003), 185-219.
-
Jimbo M., Monodromy problem and the boundary condition for some Painlevé equations, Publ. Res. Inst. Math. Sci. 18 (1982), 1137-1161.
-
Jimbo M., Miwa T., Ueno K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau $-function, Phys. D 2 (1981), 306-352.
-
Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448.
-
Litvinov A., Lukyanov S., Nekrasov N., Zamolodchikov A., Classical conformal blocks and Painlevé VI, J. High Energy Phys. 2014 (2014), no. 7, 144, 20 pages, 1309.4700.
-
Maier R.S., The 192 solutions of the Heun equation, Math. Comp. 76 (2007), 811-843, math.CA/0408317.
-
Mazzocco M., Rational solutions of the Painlevé VI equation, J. Phys. A: Math. Gen. 34 (2001), 2281-2294, nlin.SI/0007036.
-
Ronveaux A. (Editor), Heun's differential equations, Oxford University Press, Oxford - New York - Tokyo, 1995.
-
Schlesinger L., Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten, J. Reine Angew. Math. 141 (1912), 96-145.
-
Schmidt D., Wolf G., A method of generating integral relations by the simultaneous separability of generalized Schrödinger equations, SIAM J. Math. Anal. 10 (1979), 823-838.
-
Slavyanov S.Yu., Painlevé equations as classical analogues of Heun equations, J. Phys. A: Math. Gen. 29 (1996), 7329-7335.
-
Slavyanov S.Yu., Lay W., Special functions: a unified theory based on singularities, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000.
-
Smirnov A.O., Finite-gap solutions of the Fuchsian equations, Lett. Math. Phys. 76 (2006), 297-316, math.CA/0310465.
-
Stieltjes T.J., Sur certains polynômes: qui vérifient une équation différentielle linéaire du second ordre et sur la theorie des fonctions de Lamé, Acta Math. 6 (1885), 321-326.
-
Takemura K., Integral transformation of Heun's equation and some applications, J. Math. Soc. Japan 69 (2017), 849-891, arXiv:1008.4007.
|
|