|
SIGMA 14 (2018), 101, 33 pages arXiv:1801.09939
https://doi.org/10.3842/SIGMA.2018.101
Contribution to the Special Issue on Elliptic Hypergeometric Functions and Their Applications
Macdonald Polynomials of Type $C_n$ with One-Column Diagrams and Deformed Catalan Numbers
Ayumu Hoshino a and Jun'ichi Shiraishi b
a) Hiroshima Institute of Technology, 2-1-1 Miyake, Hiroshima 731-5193, Japan
b) Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Tokyo 153-8914, Japan
Received January 31, 2018, in final form September 11, 2018; Published online September 20, 2018
Abstract
We present an explicit formula for the transition matrix $\mathcal{C}$ from the type $C_n$ degeneration of the Koornwinder polynomials $P_{(1^r)}(x\,|\,a,-a,c,-c\,|\,q,t)$ with one column diagrams, to the type $C_n$ monomial symmetric polynomials $m_{(1^{r})}(x)$. The entries of the matrix $\mathcal{C}$ enjoy a set of three term recursion relations, which can be regarded as a $(a,c,t)$-deformation of the one for the Catalan triangle or ballot numbers. Some transition matrices are studied associated with the type $(C_n,C_n)$ Macdonald polynomials $P^{(C_n,C_n)}_{(1^r)}(x\,|\,b;q,t)= P_{(1^r)}\big(x\,|\,b^{1/2},-b^{1/2},q^{1/2}b^{1/2},-q^{1/2}b^{1/2}\,|\,q,t\big)$. It is also shown that the $q$-ballot numbers appear as the Kostka polynomials, namely in the transition matrix from the Schur polynomials $P^{(C_n,C_n)}_{(1^r)}(x\,|\,q;q,q)$ to the Hall-Littlewood polynomials $P^{(C_n,C_n)}_{(1^r)}(x\,|\,t;0,t)$.
Key words:
Koornwinder polynomial; Catalan number.
pdf (598 kb)
tex (32 kb)
References
-
Allen E.A., Combinatorial interpretations of generalizations of Catalan numbers and ballot numbers, Ph.D. Thesis, Carnegie Mellon University, 2014.
-
Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), iv+55 pages.
-
Braverman A., Finkelberg M., Shiraishi J., Macdonald polynomials, Laumon spaces and perverse coherent sheaves, in Perspectives in Representation Theory, Contemp. Math., Vol. 610, Amer. Math. Soc., Providence, RI, 2014, 23-41, arXiv:1206.3131.
-
Bressoud D.M., A matrix inverse, Proc. Amer. Math. Soc. 88 (1983), 446-448.
-
Feigin B., Hoshino A., Noumi M., Shibahara J., Shiraishi J., Tableau formulas for one-row Macdonald polynomials of types $C_n$ and $D_n$, SIGMA 11 (2015), 100, 21 pages, arXiv:1412.8001.
-
Fürlinger J., Hofbauer J., $q$-Catalan numbers, J. Combin. Theory Ser. A 40 (1985), 248-264.
-
Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Vol. 96, 2nd ed., Cambridge University Press, Cambridge, 2004.
-
Hoshino A., Noumi M., Shiraishi J., Some transformation formulas associated with Askey-Wilson polynomials and Lassalle's formulas for Macdonald-Koornwinder polynomials, Mosc. Math. J. 15 (2015), 293-318, arXiv:1406.1628.
-
Komori Y., Noumi M., Shiraishi J., Kernel functions for difference operators of Ruijsenaars type and their applications, SIGMA 5 (2009), 054, 40 pages, arXiv:0812.0279.
-
Koornwinder T.H., Askey-Wilson polynomials for root systems of type $BC$, in Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., Vol. 138, Amer. Math. Soc., Providence, RI, 1992, 189-204.
-
Krattenthaler C., A new matrix inverse, Proc. Amer. Math. Soc. 124 (1996), 47-59.
-
Lassalle M., Some conjectures for Macdonald polynomials of type $B$, $C$, $D$, Sém. Lothar. Combin. 52 (2004), Art. B52h, 24 pages, math.CO/0503149.
-
Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
-
Macdonald I.G., Orthogonal polynomials associated with root systems, Sém. Lothar. Combin. 45 (2000), Art. B45a, 40 pages, math.QA/0011046.
-
Mimachi K., A duality of MacDonald-Koornwinder polynomials and its application to integral representations, Duke Math. J. 107 (2001), 265-281.
-
Noumi M., Shiraishi J., A direct approach to the bispectral problem for the Ruijsenaars-Macdonald $q$-difference operators, arXiv:1206.5364.
-
Okounkov A., ${\rm BC}$-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials, Transform. Groups 3 (1998), 181-207, q-alg/9611011.
-
Rains E.M., $BC_n$-symmetric Abelian functions, Duke Math. J. 135 (2006), 99-180, math.CO/0402113.
-
Rains E.M., Transformations of elliptic hypergeometric integrals, Ann. of Math. 171 (2010), 169-243, math.QA/0309252.
-
Rains E.M., Warnaar S.O., Bounded Littlewood identities, Mem. Amer. Math. Soc. to appear, arXiv:1506.02755.
-
Shapiro L.W., A Catalan triangle, Discrete Math. 14 (1976), 83-90.
-
Stokman J.V., Macdonald-Koornwinder polynomials, arXiv:1111.6112.
|
|