Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 14 (2018), 102, 13 pages      arXiv:1708.09745      https://doi.org/10.3842/SIGMA.2018.102
Contribution to the Special Issue on Modular Forms and String Theory in honor of Noriko Yui

Hesse Pencils and 3-Torsion Structures

Ane S.I. Anema, Jaap Top and Anne Tuijp
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

Received May 08, 2018, in final form September 18, 2018; Published online September 21, 2018

Abstract
This paper intends to focus on the universal property of this Hesse pencil and of its twists. The main goal is to do this as explicit and elementary as possible, and moreover to do it in such a way that it works in every characteristic different from three.

Key words: Hesse pencil; Galois representation; torsion points; elliptic curves.

pdf (376 kb)   tex (19 kb)

References

  1. Anema A.S.I., The arithmetic of maximal curves, the Hesse pencil and the Mestre curve, Ph.D. Thesis, Rijksuniversiteit Groningen, 2016, available at http://hdl.handle.net/11370/0ef530b1-709b-4285-b68d-016a67e6e928.
  2. Artebani M., Dolgachev I., The Hesse pencil of plane cubic curves,Enseign. Math. 55 (2009), 235-273, math.AG/0611590.
  3. Artin M., Rodriguez-Villegas F., Tate J., On the Jacobians of plane cubics, Adv. Math. 198 (2005), 366-382.
  4. Bosma W., Cannon J., Playoust C., The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265.
  5. Dickson L.E., Invariantive theory of plane cubic curves modulo 2, Amer. J. Math. 37 (1915), 107-116.
  6. Fisher T., The Hessian of a genus one curve, Proc. Lond. Math. Soc. 104 (2012), 613-648, math.NT/0610403.
  7. Fisher T., On families of 7- and 11-congruent elliptic curves, LMS J. Comput. Math. 17 (2014), 536-564.
  8. Fulton W., Algebraic curves. An introduction to algebraic geometry, 2008, available at http://www.math.lsa.umich.edu/~wfulton/.
  9. Glynn D.G., On cubic curves in projective planes of characteristic two, Australas. J. Combin. 17 (1998), 1-20.
  10. Kuwata M., Constructing families of elliptic curves with prescribed mod 3 representation via Hessian and Cayleyan curves, arXiv:1112.6317.
  11. Pascal E., Repertorium der höheren Mathematik: II. Teil: Die Geometrie, B.G. Teubner, Leipzig, 1902 (German translation of Repertorio di matematiche superiori (definizioni, formole, teoremi, cenni bibliografici), II. Geometria, Ulrico Hoepli, Milano, 1900).
  12. Rubin K., Silverberg A., Families of elliptic curves with constant mod $p$ representations, in Elliptic Curves, Modular Forms, & Fermat's Last Theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, 148-161.
  13. Silverman J.H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, Vol. 106, Springer-Verlag, New York, 1986.
  14. Top J., Yui N., Explicit equations of some elliptic modular surfaces, Rocky Mountain J. Math. 37 (2007), 663-687, math.AG/0307230.
  15. Tuijp A., Hesse pencil in characteristic two, Bachelor's Thesis, Rijksuniversiteit Groningen, 2015, available at http://fse.studenttheses.ub.rug.nl/id/eprint/13074.
  16. Washington L.C., Elliptic curves. Number theory and cryptography, 2nd ed., Discrete Mathematics and its Applications, Chapman & Hall/CRC, Boca Raton, FL, 2008.

Previous article  Next article   Contents of Volume 14 (2018)