Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 14 (2018), 110, 29 pages      arXiv:1805.09627      https://doi.org/10.3842/SIGMA.2018.110
Contribution to the Special Issue on Modular Forms and String Theory in honor of Noriko Yui

Zhegalkin Zebra Motives Digital Recordings of Mirror Symmetry

Jan Stienstra
Department of Mathematics, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, The Netherlands

Received May 10, 2018, in final form October 02, 2018; Published online October 13, 2018

Abstract
Zhegalkin zebra motives are tilings of the plane by black and white polygons representing certain ${\mathbb F}_2$-valued functions on ${\mathbb R}^2$. They exhibit a rich geometric structure and provide easy to draw insightful visualizations of many topics in the physics and mathematics literature. The present paper gives some pieces of a general theory and a few explicit examples. Many more examples will be shown in the forthcoming article ''Zhegalkin zebra motives: algebra and geometry in black and white''.

Key words: Zhegalkin polynomials; motives; dimer models; mirror symmetry.

pdf (1891 kb)   tex (2853 kb)

References

  1. Amariti A., Forcella D., Mariotti A., Integrability on the master space, J. High Energy Phys. 2012 (2012), no. 6, 053, 44 pages, arXiv:1203.1616.
  2. Batyrev V.V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994), 493-535, alg-geom/9310003.
  3. Batyrev V.V., Borisov L.A., Dual cones and mirror symmetry for generalized Calabi-Yau manifolds, in Mirror Symmetry, II, AMS/IP Stud. Adv. Math., Vol. 1, Editors B. Greene, S.T. Yau, Amer. Math. Soc., Providence, RI, 1997, 71-86, alg-geom/9402002.
  4. Bobenko A.I., Surfaces from circles, in Discrete Differential Geometry, Oberwolfach Semin., Vol. 38, Birkhäuser, Basel, 2008, 3-35, arXiv:0707.1318.
  5. Bocklandt R., A dimer ABC, Bull. Lond. Math. Soc. 48 (2016), 387-451, arXiv:1510.04242.
  6. Broomhead N., Dimer models and Calabi-Yau algebras, Mem. Amer. Math. Soc. 215 (2012), viii+86 pages, arXiv:0901.4662.
  7. Davey J., Hanany A., Pasukonis J., On the classification of brane tilings, J. High Energy Phys. 2010 (2010), no. 1, 078, 30 pages, arXiv:0901.4662.
  8. Forcella D., Hanany A., He Y.-H., Zaffaroni A., The master space of ${\mathcal N}=1$ gauge theories, J. High Energy Phys. 2008 (2008), no. 8, 012, 71 pages, arXiv:0801.1585.
  9. Fulton W., Introduction to toric varieties, Annals of Mathematics Studies, Vol. 131, Princeton University Press, Princeton, NJ, 1993.
  10. Goncharov A.B., Kenyon R., Dimers and cluster integrable systems, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), 747-813, arXiv:1107.5588.
  11. Gulotta D.R., Properly ordered dimers, $R$-charges, and an efficient inverse algorithm, J. High Energy Phys. 2008 (2008), no. 10, 014, 31 pages, arXiv:0807.3012.
  12. Hanany A., Seong R.-K., Brane tilings and reflexive polygons, Fortschr. Phys. 60 (2012), 695-803, arXiv:1201.2614.
  13. Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, Vol. 52, Springer-Verlag, New York - Heidelberg, 1977.
  14. Lando S.K., Zvonkin A.K., Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, Vol. 141, Springer-Verlag, Berlin, 2004.
  15. Murre J.P., Nagel J., Peters C.A.M., Lectures on the theory of pure motives, University Lecture Series, Vol. 61, Amer. Math. Soc., Providence, RI, 2013.
  16. Schneps L. (Editor), The Grothendieck theory of dessins d'enfants, London Mathematical Society Lecture Note Series, Vol. 200, Cambridge University Press, Cambridge, 1994.
  17. Vidunas R., He Y.-H., Composite genus one Belyi maps, Indag. Math. (N.S.) 29 (2018), 916-947, arXiv:1610.08075.

Previous article  Next article   Contents of Volume 14 (2018)