|
SIGMA 14 (2018), 112, 14 pages arXiv:1803.03105
https://doi.org/10.3842/SIGMA.2018.112
Strictly Positive Definite Functions on Compact Two-Point Homogeneous Spaces: the Product Alternative
Rafaela N. Bonfim a, Jean C. Guella b and Valdir A. Menegatto b
a) DEMAT-Universidade Federal de São João Del Rei, Praça Frei Orlando, 170, Centro, 36307-352 São João del Rei - MG, Brazil
b) Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970, São Carlos - SP, Brazil
Received March 08, 2018, in final form October 10, 2018; Published online October 16, 2018
Abstract
For two continuous and isotropic positive definite kernels on the same compact two-point homogeneous space, we determine necessary and sufficient conditions in order that their product be strictly positive definite. We also provide a similar characterization for kernels on the space-time setting $G \times S^d$, where $G$ is a locally compact group and $S^d$ is the unit sphere in $\mathbb{R}^{d+1}$, keeping isotropy of the kernels with respect to the $S^d$ component. Among other things, these results provide new procedures for the construction of valid models for interpolation and approximation on compact two-point homogeneous spaces.
Key words:
strict positive definiteness; spheres; product kernels; linearization formulas; isotropy.
pdf (350 kb)
tex (19 kb)
References
-
Askey R., Orthogonal polynomials and special functions, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975.
-
Barbosa V.S., Menegatto V.A., Strictly positive definite kernels on compact two-point homogeneous spaces, Math. Inequal. Appl. 19 (2016), 743-756, arXiv:1505.00591.
-
Barbosa V.S., Menegatto V.A., Strict positive definiteness on products of compact two-point homogeneous spaces, Integral Transforms Spec. Funct. 28 (2017), 56-73, arXiv:1605.07071.
-
Berg C., Porcu E., From Schoenberg coefficients to Schoenberg functions, Constr. Approx. 45 (2017), 217-241, arXiv:1505.05682.
-
Bingham N.H., Positive definite functions on spheres, Proc. Cambridge Philos. Soc. 73 (1973), 145-156.
-
Chen D., Menegatto V.A., Sun X., A necessary and sufficient condition for strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 131 (2003), 2733-2740.
-
De Iaco S., Myers D.E., Posa D., On strict positive definiteness of product and product-sum covariance models, J. Statist. Plann. Inference 141 (2011), 1132-1140.
-
De Iaco S., Myers D.E., Posa D., Strict positive definiteness of a product of covariance functions, Comm. Statist. Theory Methods 40 (2011), 4400-4408.
-
De Iaco S., Posa D., Strict positive definiteness in geostatistics, Stoch. Environ. Res. Risk Assess. 32 (2018), 577-590.
-
Faraut J., Fonction brownienne sur une variété riemannienne, in Séminaire de Probabilités, VII (Univ. Strasbourg, année universitaire 1971-1972), Lecture Notes in Math., Vol. 321, Springer, Berlin, 1973, 61-76.
-
Gangolli R., Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters, Ann. Inst. H. Poincaré Sect. B 3 (1967), 121-226.
-
Gasper G., Linearization of the product of Jacobi polynomials. I, Canad. J. Math. 22 (1970), 171-175.
-
Gasper G., Linearization of the product of Jacobi polynomials. II, Canad. J. Math. 22 (1970), 582-593.
-
Guella J.C., Menegatto V.A., Strictly positive definite kernels on a product of spheres, J. Math. Anal. Appl. 435 (2016), 286-301, arXiv:1505.03695.
-
Guella J.C., Menegatto V.A., A limit formula for semigroups defined by Fourier-Jacobi series, Proc. Amer. Math. Soc. 146 (2018), 2027-2038.
-
Guella J.C., Menegatto V.A., Unitarily invariant strictly positive definite kernels on spheres, Positivity 22 (2018), 91-103.
-
Guella J.C., Menegatto V.A., Schoenberg's theorem for positive definite functions on products: a unifying framework, J. Fourier Anal. Appl., to appear.
-
Helgason S., Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Mathematical Surveys and Monographs, Vol. 83, Amer. Math. Soc., Providence, RI, 2000.
-
Horn R.A., Johnson C.R., Matrix analysis, Cambridge University Press, Cambridge, 1990.
-
Hylleraas E.A., Linearization of products of Jacobi polynomials, Math. Scand. 10 (1962), 189-200.
-
Koornwinder T., Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula, J. London Math. Soc. 18 (1978), 101-114.
-
Menegatto V.A., Strictly positive definite kernels on the Hilbert sphere, Appl. Anal. 55 (1994), 91-101.
-
Menegatto V.A., Oliveira C.P., Peron A.P., Strictly positive definite kernels on subsets of the complex plane, Comput. Math. Appl. 51 (2006), 1233-1250.
-
Menegatto V.A., Peron A.P., Positive definite kernels on complex spheres, J. Math. Anal. Appl. 254 (2001), 219-232.
-
Schoenberg I.J., Positive definite functions on spheres, Duke Math. J. 9 (1942), 96-108.
-
Szegő G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, Vol. 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975.
-
Wang H.-C., Two-point homogeneous spaces, Ann. of Math. 55 (1952), 177-191.
-
Wolf J.A., Spaces of constant curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011.
-
Wünsche A., Generalized Zernike or disc polynomials, J. Comput. Appl. Math. 174 (2005), 135-163.
|
|