|
SIGMA 14 (2018), 122, 46 pages arXiv:1804.10664
https://doi.org/10.3842/SIGMA.2018.122
Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I
Adolfo Guillot
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
Received May 01, 2018, in final form November 05, 2018; Published online November 11, 2018
Abstract
For ordinary differential equations in the complex domain, a central problem is to understand, in a given equation or class of equations, those whose solutions do not present multivaluedness. We consider autonomous, first-order, quadratic homogeneous equations in three variables, and begin the classification of those which do not have multivalued solutions.
Key words:
Painlevé property; univalence; semicompleteness; Chazy equation; Riccati equation; Kowalevski exponents.
pdf (732 kb)
tex (52 kb)
References
-
Audin M., Remembering Sofya Kovalevskaya, Springer, London, 2011.
-
Briot C., Bouquet J.C., Recherches sur les fonctions doublement périodiques, C. R. Acad. Sci. Paris 40 (1855), 342-344.
-
Brunella M., Birational geometry of foliations, Monografías de Matemática, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2000.
-
Burnside W., Note on the equation $y^2 = x \big(x^4-1\big)$, Proc. Lond. Math. Soc. s1-24 (1892), 17-20.
-
Camacho C., Sad P., Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. 115 (1982), 579-595.
-
Chazy J., Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes, Acta Math. 34 (1911), 317-385.
-
Conte R., The Painlevé approach to nonlinear ordinary differential equations, in The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 77-180, solv-int/9710020.
-
Cosgrove C.M., Chazy classes IX-XI of third-order differential equations, Stud. Appl. Math. 104 (2000), 171-228.
-
Cosgrove C.M., Higher-order Painlevé equations in the polynomial class. I. Bureau symbol ${\rm P2}$, Stud. Appl. Math. 104 (2000), 1-65.
-
Cosgrove C.M., Higher-order Painlevé equations in the polynomial class. II. Bureau symbol $P1$, Stud. Appl. Math. 116 (2006), 321-413.
-
Exton H., Third order differential systems with fixed critical points, Funkcial. Ekvac. 19 (1976), 45-51.
-
Fujiki A., Finite automorphism groups of complex tori of dimension two, Publ. Res. Inst. Math. Sci. 24 (1988), 1-97.
-
Gambier B., Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes, Acta Math. 33 (1910), 1-55.
-
Garnier R., Sur des systèmes différentiels du second ordre dont l'intégrale générale est uniforme, Ann. Sci. École Norm. Sup. 77 (1960), 123-144.
-
Ghys E., Rebelo J.C., Singularités des flots holomorphes. II, Ann. Inst. Fourier (Grenoble) 47 (1997), 1117-1174.
-
Goriely A., A brief history of Kovalevskaya exponents and modern developments, Regul. Chaotic Dyn. 5 (2000), 3-15.
-
Guillot A., Champs quadratiques uniformisables, Ph.D. Thesis, École Normale Supérieure de Lyon, 2001.
-
Guillot A., Sur les exemples de Lins Neto de feuilletages algébriques, C. R. Math. Acad. Sci. Paris 334 (2002), 747-750.
-
Guillot A., Un théorème de point fixe pour les endomorphismes de l'espace projectif avec des applications aux feuilletages algébriques, Bull. Braz. Math. Soc. (N.S.) 35 (2004), 345-362.
-
Guillot A., Semicompleteness of homogeneous quadratic vector fields, Ann. Inst. Fourier (Grenoble) 56 (2006), 1583-1615.
-
Guillot A., Sur les équations d'Halphen et les actions de ${\rm SL}_2({\bf C})$, Publ. Math. Inst. Hautes Études Sci. (2007), 221-294.
-
Guillot A., Some generalizations of Halphen's equations, Osaka J. Math. 48 (2011), 1085-1094.
-
Guillot A., The geometry of Chazy's homogeneous third-order differential equations, Funkcial. Ekvac. 55 (2012), 67-87, arXiv:1011.6090.
-
Guillot A., Complex differential equations and geometric structures on curves, in Geometrical Themes Inspired by the $N$-Body Problem, Lecture Notes in Math., Vol. 2204, Springer, Cham, 2018, 1-47.
-
Guillot A., Further Riccati differential equations with elliptic coefficients and meromorphic solutions, J. Nonlinear Math. Phys. 25 (2018), 497-508.
-
Guillot A., Ramírez V., On the multipliers at fixed points of self-maps of the projective plane, in preparation.
-
Guillot A., Rebelo J., Semicomplete meromorphic vector fields on complex surfaces, J. Reine Angew. Math. 667 (2012), 27-65.
-
Halphen G.H., Sur un système d'équations différentielles, C. R. Acad. Sci. Paris 92 (1881), 1101-1103.
-
Halphen G.H., Sur certains systèmes d'équations différentielles, C. R. Acad. Sci. Paris 92 (1881), 1404-1406.
-
Hille E., Ordinary differential equations in the complex domain, Dover Publications, Inc., Mineola, NY, 1997.
-
Hoyer P., Ueber die Integration eines Differentialgleichungssystems von der Form ... durch elliptische Funktionen, Ph.D. Thesis, Friedrich-Willelms Universität, Berlin, 1879, available at http://resolver.sub.uni-goettingen.de/purl?PPN310984289.
-
Ince E.L., Ordinary differential equations, Dover Publications, New York, 1944.
-
Kimura T., Matuda T., On systems of differential equations of order two with fixed branch points, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 445-449.
-
Kowalevski S., Sur le problème de la rotation d'un corps solide autour d'un point fixe, Acta Math. 12 (1889), 177-232.
-
Kudryashov Yu., Ramírez V., Spectra of quadratic vector fields on $\mathbb{C}^2$: the missing relation, arXiv:1705.06340.
-
Landau L.D., Lifshitz E.M., Course of theoretical physics, Vol. 1, Mechanics, Pergamon Press, Oxford - London - New York - Paris, 1976.
-
Lawden D.F., Elliptic functions and applications, Applied Mathematical Sciences, Vol. 80, Springer-Verlag, New York, 1989.
-
Lins Neto A., Some examples for the Poincaré and Painlevé problems, Ann. Sci. École Norm. Sup. 35 (2002), 231-266.
-
Lins Neto A., Fibers of the Baum-Bott map for foliations of degree two on ${\mathbb P}^2$, Bull. Braz. Math. Soc. (N.S.) 43 (2012), 129-169.
-
Mumford D., Tata lectures on theta. II. Jacobian theta functions and differential equations, Progress in Mathematics, Vol. 43, Birkhäuser Boston, Inc., Boston, MA, 1984.
-
Painlevé P., Mémoire sur les équations différentielles dont l'intégrale générale est uniforme, Bull. Soc. Math. France 28 (1900), 201-261.
-
Painlevé P., Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme, Acta Math. 25 (1902), 1-85.
-
Palais R.S., A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. 22 (1957), iii+123 pages.
-
Pan I., Sebastiani M., Les équations différentielles algébriques et les singularités mobiles, Ensaios Matemáticos, Vol. 8, Sociedade Brasileira de Matemática, Rio de Janeiro, 2004.
-
Rebelo J.C., Singularités des flots holomorphes, Ann. Inst. Fourier (Grenoble) 46 (1996), 411-428.
-
SageMath, the Sage Mathematics Software System, Version 8.1, 2017, available at http://www.sagemath.org.
-
Yoshida H., Necessary condition for the existence of algebraic first integrals. I. Kowalevski's exponents, Celestial Mech. 31 (1983), 363-379.
|
|