|
SIGMA 14 (2018), 125, 38 pages arXiv:1804.03173
https://doi.org/10.3842/SIGMA.2018.125
Contribution to the Special Issue on Painlevé Equations and Applications in Memory of Andrei Kapaev
On the Increasing Tritronquée Solutions of the Painlevé-II Equation
Peter D. Miller
Department of Mathematics, University of Michigan, East Hall, 530 Church St., Ann Arbor, MI 48109, USA
Received April 11, 2018, in final form November 12, 2018; Published online November 15, 2018
Abstract
The increasing tritronquée solutions of the Painlevé-II equation with parameter $\alpha$ exhibit square-root asymptotics in the maximally-large sector $|\arg(x)|$<$\tfrac{2}{3}\pi$ and have recently appeared in applications where it is necessary to understand the behavior of these solutions for complex values of $\alpha$. Here these solutions are investigated from the point of view of a Riemann-Hilbert representation related to the Lax pair of Jimbo and Miwa, which naturally arises in the analysis of rogue waves of infinite order. We show that for generic complex $\alpha$, all such solutions are asymptotically pole-free along the bisecting ray of the complementary sector $|\arg(-x)|$<$\tfrac{1}{3}\pi$ that contains the poles far from the origin. This allows the definition of a total integral of the solution along the axis containing the bisecting ray, in which certain algebraic terms are subtracted at infinity and the poles are dealt with in the principal-value sense. We compute the value of this integral for all such solutions. We also prove that if the Painlevé-II parameter $\alpha$ is of the form $\alpha=\pm\tfrac{1}{2}+{\rm i} p$, $p\in\mathbb{R}\setminus\{0\}$, one of the increasing tritronquée solutions has no poles or zeros whatsoever along the bisecting axis.
Key words:
Painlevé-II equation; tronquée solutions.
pdf (3595 kb)
tex (3085 kb)
References
-
Baik J., Buckingham R., DiFranco J., Its A., Total integrals of global solutions to Painlevé II, Nonlinearity 22 (2009), 1021-1061, arXiv:0810.2586.
-
Bertola M., Tovbis A., Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the tritronquée solution to Painlevé I, Comm. Pure Appl. Math. 66 (2013), 678-752, arXiv:1004.1828.
-
Bilman D., Ling L., Miller P.D., Extreme superposition: rogue waves of infinite order and the Painlevé-III hierarchy, arXiv:1806.00545.
-
Bothner T., Transition asymptotics for the Painlevé II transcendent, Duke Math. J. 166 (2017), 205-324, arXiv:1502.03402.
-
Bothner T., Miller P.D., Rational solutions of the Painlevé-III equation: large parameter asymptotics, arXiv:1808.01421.
-
Bothner T., Miller P.D., Sheng Y., Rational solutions of the Painlevé-III equation, Stud. Appl. Math. 141 (2018), 626-679, arXiv:1801.04360.
-
Boutroux P., Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre, Ann. Sci. École Norm. Sup. 30 (1913), 255-375.
-
Boutroux P., Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre (suite), Ann. Sci. École Norm. Sup. 31 (1914), 99-159.
-
Buckingham R.J., Miller P.D., The sine-Gordon equation in the semiclassical limit: critical behavior near a separatrix, J. Anal. Math. 118 (2012), 397-492, Corrigenda, J. Anal. Math. 119 (2013), 403-405, arXiv:1106.5716.
-
Buckingham R.J., Miller P.D., Large-degree asymptotics of rational Painlevé-II functions: noncritical behaviour, Nonlinearity 27 (2014), 2489-2578, arXiv:1310.2276.
-
Buckingham R.J., Miller P.D., Large-degree asymptotics of rational Painlevé-II functions: critical behaviour, Nonlinearity 28 (2015), 1539-1596, arXiv:1406.0826.
-
Claeys T., Grava T., Painlevé II asymptotics near the leading edge of the oscillatory zone for the Korteweg-de Vries equation in the small-dispersion limit, Comm. Pure Appl. Math. 63 (2010), 203-232, arXiv:0812.4142.
-
Clarkson P.A., On Airy solutions of the second Painlevé equation, Stud. Appl. Math. 137 (2016), 93-109, arXiv:1510.08326.
-
Deift P.A., Zhou X., Asymptotics for the Painlevé II equation, Comm. Pure Appl. Math. 48 (1995), 277-337.
-
Dubrovin B., Grava T., Klein C., On universality of critical behavior in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation, J. Nonlinear Sci. 19 (2009), 57-94, arXiv:0704.0501.
-
Flaschka H., Newell A.C., Monodromy- and spectrum-preserving deformations. I, Comm. Math. Phys. 76 (1980), 65-116.
-
Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Yu., Painlevé transcendents: the Riemann-Hilbert approach, Mathematical Surveys and Monographs, Vol. 128, Amer. Math. Soc., Providence, RI, 2006.
-
Gambier B., Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes, Acta Math. 33 (1910), 1-55.
-
Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448.
-
Joshi N., Mazzocco M., Existence and uniqueness of tri-tronquée solutions of the second Painlevé hierarchy, Nonlinearity 16 (2003), 427-439, math.CA/0212117.
-
Kapaev A.A., Asymptotic expressions for the second Painlevé functions, Theoret. and Math. Phys. 77 (1988), 1227-1234.
-
Kapaev A.A., Global asymptotics of the second Painlevé transcendent, Phys. Lett. A 167 (1992), 356-362.
-
Kapaev A.A., Scaling limits in the second Painlevé transcendent, J. Math. Sci. 83 (1997), 38-61.
-
Lu B.-Y., Miller P.D., Universality near the gradient catastrophe point in the semiclassical sine-Gordon equation, in preparation.
-
Novokshenov V.Yu., Tronquée solutions of the Painlevé II equation, Theoret. and Math. Phys. 172 (2012), 1136-1146.
-
Olver F.W.J., Olde Daalhuis A.B., Lozier D.W., Schneider B.I., Boisvert R.F., Clark C.W., Miller B.R., Saunders B.V. (Editors), NIST digital library of mathematical functions, Release 1.0.17, 2017, available at http://dlmf.nist.gov/.
-
Olver S., RHPackage, Version 0.4, 2011, available at https://github.com/dlfivefifty/RHPackage.
-
Tracy C.A., Widom H., Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), 151-174, hep-th/9211141.
-
Zhou X., The Riemann-Hilbert problem and inverse scattering, SIAM J. Math. Anal. 20 (1989), 966-986.
|
|