| 
 SIGMA 16 (2020), 022, 33 pages       arXiv:1712.07930     
https://doi.org/10.3842/SIGMA.2020.022 
Contribution to the Special Issue on Algebra, Topology, and Dynamics in Interaction in honor of Dmitry Fuchs 
Counting Periodic Trajectories of Finsler Billiards
Pavle V.M. Blagojević ab, Michael Harrison c, Serge Tabachnikov d and Günter M. Ziegler a
 a) Institut für Mathematik, FU Berlin, Arnimallee 2, 14195 Berlin, Germany
 b) Mathematical Institut SASA, Knez Mihailova 36, 11000 Beograd, Serbia
 c) Department of Mathematical Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
 d) Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
 
 
Received September 11, 2019, in final form March 25, 2020; Published online April 03, 2020
 Abstract 
We provide lower bounds on the number of periodic Finsler billiard trajectories inside a quadratically convex smooth closed hypersurface $M$ in a $d$-dimensional Finsler space with possibly irreversible Finsler metric. An example of such a system is a billiard in a sufficiently weak magnetic field. The $r$-periodic Finsler billiard trajectories correspond to $r$-gons inscribed in $M$ and having extremal Finsler length. The cyclic group ${\mathbb Z}_r$ acts on these extremal polygons, and one counts the ${\mathbb Z}_r$-orbits. Using Morse and Lusternik-Schnirelmann theories, we prove that if $r\ge 3$ is prime, then the number of $r$-periodic Finsler billiard trajectories is not less than $(r-1)(d-2)+1$. We also give stronger lower bounds when $M$ is in general position. The problem of estimating the number of periodic billiard trajectories from below goes back to Birkhoff. Our work extends to the Finsler setting the results previously obtained for Euclidean billiards by Babenko, Farber, Tabachnikov, and Karasev. 
 Key words: mathematical billiards; Finsler manifolds; magnetic billiards; Morse and Lusternik-Schnirelmann theories; unlabeled cyclic configuration spaces. 
pdf (1033 kb)  
tex (470 kb)  
 
 
References 
- Adem A., Milgram R.J., Cohomology of finite groups, 2nd ed., Grundlehren der  Mathematischen Wissenschaften, Vol. 309, Springer-Verlag, Berlin,  2004.
 
- Akopyan A.V., Zaslavsky A.A., Geometry of conics, Mathematical World,  Vol. 26, Amer. Math. Soc., Providence, RI, 2007.
 
- Álvarez J.C., Durán C., An introduction to Finsler geometry, Notas de  la Escuela Venezolana de Matématicas, 1998.
 
- Artstein-Avidan S., Karasev R., Ostrover Y., From symplectic measurements to  the Mahler conjecture, Duke Math. J. 163 (2014),  2003-2022, arXiv:1303.4197.
 
- Artstein-Avidan S., Ostrover Y., Bounds for Minkowski billiard trajectories  in convex bodies, Int. Math. Res. Not. 2014 (2014), 165-193, arXiv:1111.2353.
 
- Babenko I.K., Periodic trajectories of three-dimensional Birkhoff billiards,  Math. USSR Sb. 71 (1992), 1-13.
 
- Bangert V., On the existence of closed geodesics on two-spheres,  Internat. J. Math. 4 (1993), 1-10.
 
- Bao D., Chern S.-S., Shen Z., An introduction to Riemann-Finsler geometry,  Graduate Texts in Mathematics, Vol. 200, Springer-Verlag, New York,  2000.
 
- Berglund N., Kunz H., Integrability and ergodicity of classical billiards in a  magnetic field, J. Statist. Phys. 83 (1996), 81-126,  arXiv:chao-dyn/9501009.
 
- Bialy M., On totally integrable magnetic billiards on constant curvature  surface, Electron. Res. Announc. Math. Sci. 19 (2012),  112-119, arXiv:1208.2455.
 
- Birkhoff G.D., On the periodic motions of dynamical systems, Acta  Math. 50 (1927), 359-379.
 
- Blagojević P.V.M., Lück W., Ziegler G.M., Equivariant topology of  configuration spaces, J. Topol. 8 (2015), 414-456,  arXiv:1207.2852.
 
- Busemann H., Problem IV: Desarguesian spaces, in Mathematical Developments  Arising from Hilbert Problems (Proc. Sympos. Pure Math., Northern  Illinois Univ., De Kalb, Ill., 1974), 1976, 131-141.
 
- Chern S.-S., Finsler geometry is just Riemannian geometry without the  quadratic restriction, Notices Amer. Math. Soc. 43 (1996),  959-963.
 
- Chernov N., Markarian R., Chaotic billiards, Mathematical Surveys and  Monographs, Vol. 127, Amer. Math. Soc., Providence, RI, 2006.
 
- Cohen F.R., Lada T.J., May J.P., The homology of iterated loop spaces,  Lecture Notes in Math., Vol. 533, Springer-Verlag, Berlin -- New  York, 1976.
 
- Cornea O., Lupton G., Oprea J., Tanré D., Lusternik-Schnirelmann  category, Mathematical Surveys and Monographs, Vol. 103, Amer. Math.  Soc., Providence, RI, 2003,.
 
- Fadell E., Husseini S., Category weight and Steenrod operations,Bol. Soc. Mat. Mexicana 37 (1992),  151-161.
 
- Fadell E., Husseini S., Geometry and topology of configuration spaces,  Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001.
 
- Farber M., Topology of billiard problems. II, Duke Math. J.  115 (2002), 587-621, arXiv:math.AT/0006085.
 
- Farber M., Tabachnikov S., Periodic trajectories in 3-dimensional convex  billiards, Manuscripta Math. 108 (2002), 431-437,  arXiv:math.DG/0106049.
 
- Farber M., Tabachnikov S., Topology of cyclic configuration spaces and periodic  trajectories of multi-dimensional billiards, Topology 41  (2002), 553-589, arXiv:math.DG/9911226.
 
- Fenchel W., On the differential geometry of closed space curves, Bull.  Amer. Math. Soc. 57 (1951), 44-54.
 
- Fomenko A., Fuchs D., Homotopical topology, 2nd ed., Graduate Texts in  Mathematics, Vol. 273, Springer, Cham, 2016.
 
- Franks J., Geodesics on $S^2$ and periodic points of annulus homeomorphisms,  Invent. Math. 108 (1992), 403-418.
 
- Gutkin B., Hyperbolic magnetic billiards on surfaces of constant curvature,  Comm. Math. Phys. 217 (2001), 33-53,  arXiv:nlin.CD/0003033.
 
- Gutkin E., Tabachnikov S., Billiards in Finsler and Minkowski geometries,  J. Geom. Phys. 40 (2002), 277-301.
 
- Hatcher A., Algebraic topology, Cambridge University Press, Cambridge, 2002.
 
- Karasev R.N., Periodic billiard trajectories in smooth convex bodies,  Geom. Funct. Anal. 19 (2009), 423-428, arXiv:0905.1761.
 
- Katok A.B., Ergodic perturbations of degenerate integrable Hamiltonian  systems, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973),  539-576.
 
- Kozlov V.V., Treshchev D.V., Billiards. A genetic introduction to the dynamics  of systems with impacts, Translations of Mathematical Monographs,  Vol. 89, Amer. Math. Soc., Providence, RI, 1991.
 
- Laudenbach F., A Morse complex on manifolds with boundary, Geom.  Dedicata 153 (2011), 47-57, arXiv:1003.5077.
 
- Mazzucchelli M., On the multiplicity of non-iterated periodic billiard  trajectories, Pacific J. Math. 252 (2011), 181-205,  arXiv:1012.5593.
 
- McCleary J., A user's guide to spectral sequences, 2nd ed., Cambridge Studies in  Advanced Mathematics, Vol. 58, Cambridge University Press,  Cambridge, 2001.
 
- Robnik M., Berry M.V., Classical billiards in magnetic fields,  J. Phys. A: Math. Gen. 18 (1985), 1361-1378.
 
- Roth F., On the category of Euclidean configuration spaces and associated  fibrations, in Groups, Homotopy and Configuration Spaces, Geom.  Topol. Monogr., Vol. 13, Geom. Topol. Publ., Coventry, 2008, 447-461, arXiv:0904.1013.
 
- Rudyak Yu.B., On category weight and its applications, Topology  38 (1999), 37-55.
 
- Shen Y.-B., Shen Z., Introduction to modern Finsler geometry, World Scientific Publishing Co., Singapore, 2016.
 
- Strom J.A., Category weight and essential category weight, Ph.D. Thesis, The  University of Wisconsin, USA, 1997.
 
- Tabachnikov S., Billiards, Panor. Synth. 1 (1995),  vi+142 pages.
 
- Tabachnikov S., Remarks on magnetic flows and magnetic billiards, Finsler  metrics and a magnetic analog of Hilbert's fourth problem, in Modern  Dynamical Systems and Applications, Cambridge University Press, Cambridge,  2004, 233-250, arXiv:math.DG/0302288.
 
- Tabachnikov S., Geometry and billiards, Student Mathematical Library,  Vol. 30, Amer. Math. Soc., Providence, RI, 2005.
 
- Tasnádi T., The behavior of nearby trajectories in magnetic billiards,  J. Math. Phys. 37 (1996), 5577-5598.
 
- Zharnitsky V., Invariant tori in Hamiltonian systems with impacts,  Comm. Math. Phys. 211 (2000), 289-302.
 
 
 | 
 |