| 
 SIGMA 16 (2020), 096, 22 pages       arXiv:1911.03288     
https://doi.org/10.3842/SIGMA.2020.096 
 
Torus-Equivariant Chow Rings of Quiver Moduli
Hans Franzen
 Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
 
 
Received March 14, 2020, in final form September 16, 2020; Published online September 30, 2020
 Abstract 
We compute rational equivariant Chow rings with respect to a torus of quiver moduli spaces. We derive a presentation in terms of generators and relations, use torus localization to identify it as a subring of the Chow ring of the fixed point locus, and we compare the two descriptions.
 Key words: torus actions; equivariant Chow rings; torus localization; quiver moduli. 
pdf (501 kb)  
tex (28 kb)  
 
 
References 
- Altmann K., Hille L., Strong exceptional sequences provided by quivers,  Algebr. Represent. Theory 2 (1999), 1-17.
 
- Assem I., Skowroński A., Simson D., Elements of the representation theory  of associative algebras, Vol. 1, Techniques of representation theory,  London Mathematical Society Student Texts, Vol. 65, Cambridge  University Press, Cambridge, 2006.
 
- Brion M., Equivariant Chow groups for torus actions, Transform.  Groups 2 (1997), 225-267.
 
- Chang T., Skjelbred T., The topological Schur lemma and related results,  Ann. of Math. 100 (1974), 307-321.
 
- Edidin D., Graham W., Equivariant intersection theory, Invent. Math.  131 (1998), 595-634, arXiv:alg-geom/9609018.
 
- Franzen H., Reineke M., Semistable Chow-Hall algebras of quivers and  quantized Donaldson-Thomas invariants, Algebra Number Theory  12 (2018), 1001-1025, arXiv:1512.03748.
 
- Franzen H., Reineke M., Sabatini S., Fano quiver moduli, arXiv:2001.10556.
 
- Goresky M., Kottwitz R., MacPherson R., Equivariant cohomology, Koszul  duality, and the localization theorem, Invent. Math. 131  (1998), 25-83.
 
- King A.D., Moduli of representations of finite-dimensional algebras,  Quart. J. Math. Oxford Ser. (2) 45 (1994), 515-530.
 
- Kresch A., Cycle groups for Artin stacks, Invent. Math. 138  (1999), 495-536, arXiv:math.AG/9810166.
 
- Le Bruyn L., Procesi C., Semisimple representations of quivers, Trans.  Amer. Math. Soc. 317 (1990), 585-598.
 
- Molina Rojas L.A., Vistoli A., On the Chow rings of classifying spaces for  classical groups, Rend. Sem. Mat. Univ. Padova 116 (2006),  271-298, arXiv:math.AG/0505560.
 
- Mumford D., Fogarty J., Kirwan F., Geometric invariant theory, 3rd ed.,  Ergebnisse der Mathematik und ihrer Grenzgebiete (2), Vol. 34, Springer-Verlag, Berlin, 1994.
 
- Pabiniak M., Sabatini S., Canonical bases for the equivariant cohomology and  K-theory rings of symplectic toric manifolds, J. Symplectic Geom.  16 (2018), 1117-1165, arXiv:1503.04730.
 
- Reineke M., Moduli of representations of quivers, in Trends in representation  theory of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc.,  Zürich, 2008, 589-637, arXiv:0802.2147.
 
- Reineke M., Stoppa J., Weist T., MPS degeneration formula for quiver moduli  and refined GW/Kronecker correspondence, Geom. Topol.  16 (2012), 2097-2134, arXiv:1110.4847.
 
- Reineke M., Weist T., Refined GW/Kronecker correspondence, Math.  Ann. 355 (2013), 17-56, arXiv:1103.5283.
 
- Rupel D., Weist T., Cell decompositions for rank two quiver Grassmannians,  Math. Z. 295 (2020), 993-1038, arXiv:1803.06590.
 
- Weist T., Localization in quiver moduli spaces, Represent. Theory  17 (2013), 382-425, arXiv:0903.5442.
 
 
 | 
 |