| 
 SIGMA 17 (2021), 051, 48 pages       arXiv:1912.00050     
https://doi.org/10.3842/SIGMA.2021.051 
 
Spectra of Compact Quotients of the Oscillator Group
Mathias Fischer and Ines Kath
 Institut für Mathematik und Informatik der Universität Greifswald, Walther-Rathenau-Str. 47, D-17489 Greifswald, Germany
 
 
Received September 28, 2020, in final form April 24, 2021; Published online May 13, 2021
 Abstract 
This paper is a contribution to harmonic analysis of compact solvmanifolds. We consider the four-dimensional oscillator group ${\rm Osc}_1$, which is a semi-direct product of the three-dimensional Heisenberg group and the real line. We classify the lattices of ${\rm Osc}_1$ up to inner automorphisms of ${\rm Osc}_1$. For every lattice $L$ in ${\rm Osc}_1$, we compute the decomposition of the right regular representation of ${\rm Osc}_1$ on $L^2(L\backslash{\rm Osc}_1)$ into irreducible unitary representations. This decomposition allows the explicit computation of the spectrum of the wave operator on the compact locally-symmetric Lorentzian manifold $L\backslash {\rm Osc}_1$.
 Key words: Lorentzian manifold; wave operator; lattice; solvable Lie group. 
pdf (666 kb)  
tex (49 kb)  
 
 
References 
- Auslander L., Kostant B., Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255-354.
 
- Berndt B.C., Evans R.J., The determination of Gauss sums, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 107-129.
 
- Brezin J., Harmonic analysis on compact solvmanifolds, Lecture Notes in Math., Vol. 602, Springer-Verlag, Berlin - Heidelberg, 1977.
 
- Corwin L., Greenleaf F.P., Character formulas and spectra of compact nilmanifolds, J. Funct. Anal. 21 (1976), 123-154.
 
- Fischer M., Lattices of oscillator groups, J. Lie Theory 27 (2017), 85-110, arXiv:1303.1970.
 
- Fujiwara H., Ludwig J., Harmonic analysis on exponential solvable Lie groups, Springer Monographs in Mathematics, Springer, Tokyo, 2015.
 
- Hecke E., Lectures on the theory of algebraic numbers, Graduate Texts in Mathematics, Vol. 77, Springer-Verlag, New York - Berlin, 1981.
 
- Howe R., On Frobenius reciprocity for unipotent algebraic groups over $Q$, Amer. J. Math. 93 (1971), 163-172.
 
- Howe R., Topics in harmonic analysis on solvable algebraic groups, Pacific J. Math. 73 (1977), 383-435.
 
- Huang H., Lattices and harmonic analysis on some 2-step solvable Lie groups, J. Lie Theory 13 (2003), 77-89.
 
- Kirillov A.A., Merits and demerits of the orbit method, Bull. Amer. Math. Soc. (N.S.) 36 (1999), 433-488.
 
- Kirillov A.A., Lectures on the orbit method, Graduate Studies in Mathematics, Vol. 64, Amer. Math. Soc., Providence, RI, 2004.
 
- Medina A., Revoy P., Les groupes oscillateurs et leurs réseaux, Manuscripta Math. 52 (1985), 81-95.
 
- Newman M., Integral matrices, Pure and Applied Mathematics, Vol. 45, Academic Press, New York - London, 1972.
 
- Pukánszky L., Characters of algebraic solvable groups, J. Funct. Anal. 3 (1969), 435-494.
 
- Raghunathan M.S., Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 68, Springer-Verlag,Berlin - Heidelberg, 1972.
 
- Richardson L.F., Decomposition of the $L^{2}$-space of a general compact nilmanifold, Amer. J. Math. 93 (1971), 173-190.
 
- Siegel C.L., Über das quadratische Reziprozitätsgesetz in algebraischen Zahlkörpern, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1960 (1960), 1-16.
 
- Streater R.F., The representations of the oscillator group, Comm. Math. Phys. 4 (1967), 217-236.
 
- Wolf J.A., Harmonic analysis on commutative spaces, Mathematical Surveys and Monographs, Vol. 142, Amer. Math. Soc., Providence, RI, 2007.
 
- Zeghib A., The identity component of the isometry group of a compact Lorentz manifold, Duke Math. J. 92 (1998), 321-333.
 
 
 | 
 |