| 
 SIGMA 18 (2022), 068, 61 pages       arXiv:2005.05637     
https://doi.org/10.3842/SIGMA.2022.068 
Contribution to the Special Issue on Enumerative and Gauge-Theoretic Invariants in honor of Lothar Göttsche on the occasion of his 60th birthday 
Universal Structures in $\mathbb C$-Linear Enumerative Invariant Theories
Jacob Gross a, Dominic Joyce a and Yuuji Tanaka b
 a) The Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
 b) Department of Mathematics, Faculty of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
 
 
Received November 22, 2021, in final form September 06, 2022; Published online September 23, 2022
 Abstract 
An enumerative invariant theory in algebraic geometry, differential geometry, or representation theory, is the study of invariants which `count' $\tau$-(semi)stable objects $E$ with fixed topological invariants $[[E]]=\alpha$ in some geometric problem, by means of a  virtual class $[{\mathcal M}_\alpha^{{\rm ss}}(\tau)]_{{\rm virt}}$ in some homology theory for the moduli spaces ${\mathcal M}_\alpha^{{\rm st}}(\tau)\subseteq{\mathcal M}_\alpha^{{\rm ss}}(\tau)$ of $\tau$-(semi)stable objects. Examples include Mochizuki's invariants counting coherent sheaves on surfaces, Donaldson-Thomas type invariants counting coherent sheaves on Calabi-Yau 3- and 4-folds and Fano 3-folds, and Donaldson invariants of 4-manifolds. We make conjectures on new universal structures common to many enumerative invariant theories. Any such theory has two moduli spaces ${\mathcal M}$, ${\mathcal M}^{{\rm pl}}$, where the second author (see https://people.maths.ox.ac.uk/~joyce/hall.pdf) gives $H_*({\mathcal M})$ the structure of a graded vertex algebra, and $H_*\big({\mathcal M}^{{\rm pl}}\big)$ a  graded Lie algebra, closely related to $H_*({\mathcal M})$. The virtual classes $[{\mathcal M}_\alpha^{{\rm ss}}(\tau)]_{{\rm virt}}$ take values in $H_*\big({\mathcal M}^{{\rm pl}}\big)$. In most such theories, defining $[{\mathcal M}_\alpha^{{\rm ss}}(\tau)]_{{\rm virt}}$ when ${\mathcal M}_\alpha^{{\rm st}}(\tau)\ne{\mathcal M}_\alpha^{{\rm ss}}(\tau)$ (in gauge theory, when the moduli space contains reducibles) is a difficult problem. We conjecture that there is a natural way to define invariants $[{\mathcal M}_\alpha^{{\rm ss}}(\tau)]_{{\rm inv}}$ in homology over $\mathbb Q$, with $[{\mathcal M}_\alpha^{{\rm ss}}(\tau)]_{{\rm inv}}=[{\mathcal M}_\alpha^{{\rm ss}}(\tau)]_{{\rm virt}}$ when ${\mathcal M}_\alpha^{{\rm st}}(\tau)={\mathcal M}_\alpha^{{\rm ss}}(\tau)$, and that these invariants satisfy a universal wall-crossing formula under change of stability condition $\tau$, written using the Lie bracket on $H_*\big({\mathcal M}^{{\rm pl}}\big)$. We prove our conjectures for moduli spaces of representations of quivers without oriented cycles. Versions of our conjectures in algebraic geometry using Behrend-Fantechi virtual classes are proved in the sequel [arXiv:2111.04694].
 Key words: invariant; stability condition; vertex algebra; wall crossing formula; quiver. 
pdf (1142 kb)  
tex (87 kb)  
 
 
References 
- Abramovich D., Olsson M., Vistoli A., Tame stacks in positive characteristic,  Ann. Inst. Fourier (Grenoble) 58 (2008), 1057-1091,  arXiv:math.AG/0703310.
 
- Akbulut S., McCarthy J.D., Casson's invariant for oriented homology  $3$-spheres. An exposition, Mathematical Notes, Vol. 36, Princeton  University Press, Princeton, NJ, 1990.
 
- Álvarez-Cónsul L., García-Prada O., Hitchin-Kobayashi correspondence,  quivers, and vortices, Comm. Math. Phys. 238 (2003), 1-33,  arXiv:math.DG/0112161.
 
- Arbesfeld N., $K$-theoretic Donaldson-Thomas theory and the Hilbert  scheme of points on a surface, Algebr. Geom. 8 (2021),  587-625, arXiv:1905.04567.
 
- Atiyah M.F., Bott R., The Yang-Mills equations over Riemann surfaces,  Philos. Trans. Roy. Soc. London Ser. A 308 (1983),  523-615.
 
- Behrend K., Fantechi B., The intrinsic normal cone, Invent. Math.  128 (1997), 45-88, arXiv:alg-geom/9601010.
 
- Benson D.J., Representations and cohomology. II. Cohomology of groups and  modules, Cambridge Studies in Advanced Mathematics, Vol. 31,  Cambridge University Press, Cambridge, 1991.
 
- Blanc A., Topological K-theory of complex noncommutative spaces,  Compos. Math. 152 (2016), 489-555, arXiv:1211.7360.
 
- Boden H.U., Herald C.M., The ${\rm SU}(3)$ Casson invariant for integral  homology $3$-spheres, J. Differential Geom. 50 (1998),  147-206, arXiv:math.DG/9809124.
 
- Borcherds R.E., Vertex algebras, Kac-Moody algebras, and the Monster,  Proc. Nat. Acad. Sci. USA 83 (1986), 3068-3071.
 
- Borisov D., Joyce D., Virtual fundamental classes for moduli spaces of sheaves  on Calabi-Yau four-folds, Geom. Topol. 21 (2017),  3231-3311, arXiv:1504.00690.
 
- Bradlow S.B., Vortices in holomorphic line bundles over closed Kähler  manifolds, Comm. Math. Phys. 135 (1990), 1-17.
 
- Bradlow S.B., Special metrics and stability for holomorphic bundles with global  sections, J. Differential Geom. 33 (1991), 169-213.
 
- Bradlow S.B., Daskalopoulos G.D., Moduli of stable pairs for holomorphic  bundles over Riemann surfaces, Internat. J. Math. 2  (1991), 477-513.
 
- Bridgeland T., Stability conditions on triangulated categories, Ann. of  Math. 166 (2007), 317-345, arXiv:math.AG/0703310.
 
- Bridgeland T., Geometry from Donaldson-Thomas invariants, in  Integrability, Quantization, and Geometry II. Quantum Theories and  Algebraic Geometry, Proc. Sympos. Pure Math., Vol. 103, Amer. Math.  Soc., Providence, RI, 2021, 1-66, arXiv:1912.06504.
 
- Cao Y., Gross J., Joyce D., Otability of moduli spaces of ${\rm  Spin}(7)$-instantons and coherent sheaves on Calabi-Yau 4-folds,  Adv. Math. 368 (2020), 107134, 60 pages,  arXiv:1811.09658.
 
- Cao Y., Kool M., Monavari S., $K$-theoretic DT/PT correspondence for toric  Calabi-Yau $4$-folds, Commun. Math. Phys., to appear,  arXiv:1906.07856.
 
- Cao Y., Leung N.C., Donaldson-Thomas theory for Calabi-Yau $4$-folds,  arXiv:1407.7659.
 
- Donaldson S., Segal E., Gauge theory in higher dimensions, II, in Geometry of  Special Holonomy and Related Topics, Surv. Differ. Geom., Vol. 16,  Int. Press, Somerville, MA, 2011, 1-41, arXiv:0902.3239.
 
- Donaldson S.K., An application of gauge theory to four-dimensional topology,  J. Differential Geom. 18 (1983), 279-315.
 
- Donaldson S.K., Polynomial invariants for smooth four-manifolds,  Topology 29 (1990), 257-315.
 
- Donaldson S.K., Kronheimer P.B., The geometry of four-manifolds, Oxford  Mathematical Monographs, Vol. 1990, The Clarendon Press, Oxford University  Press, New York, 1990.
 
- Donaldson S.K., Thomas R.P., Gauge theory in higher dimensions, in The  Geometric Universe (Oxford, 1996), Oxford University Press,  Oxford, 1998, 31-47.
 
- Ellingsrud G., Göttsche L., Variation of moduli spaces and Donaldson  invariants under change of polarization, J. Reine Angew. Math.  467 (1995), 1-49, arXiv:alg-geom/9410005.
 
- Feigin B., Gukov S., ${\rm VOA}[M_4]$, J. Math. Phys. 61  (2020), 012302, 27 pages, arXiv:1806.02470.
 
- Fintushel R., Stern R.J., Donaldson invariants of $4$-manifolds with simple  type, J. Differential Geom. 42 (1995), 577-633.
 
- Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves,  Mathematical Surveys and Monographs, Vol. 88, 2nd ed., Amer. Math.  Soc., Providence, RI, 2004.
 
- Friedlander E.M., Walker M.E., Semi-topological $K$-theory, in Handbook of  $K$-Theory. Vols. 1, 2, Springer, Berlin, 2005, 877-924.
 
- Friedman R., Qin Z., Flips of moduli spaces and transition formulas for  Donaldson polynomial invariants of rational surfaces, Comm. Anal.  Geom. 3 (1995), 11-83, arXiv:alg-geom/9410007.
 
- García-Prada O., A direct existence proof for the vortex equations over a  compact Riemann surface, Bull. London Math. Soc. 26  (1994), 88-96.
 
- García-Prada O., Dimensional reduction of stable bundles, vortices and stable  pairs, Internat. J. Math. 5 (1994), 1-52.
 
- Gómez T.L., Algebraic stacks, Proc. Indian Acad. Sci. Math. Sci.  111 (2001), 1-31, arXiv:math.AG/9911199.
 
- Göttsche L., Modular forms and Donaldson invariants for $4$-manifolds  with $b_{+}=1$, J. Amer. Math. Soc. 9 (1996), 827-843,  arXiv:alg-geom/9506018.
 
- Göttsche L., Kool M., A rank 2 Dijkgraaf-Moore-Verlinde-Verlinde  formula, Commun. Number Theory Phys. 13 (2019), 165-201,  arXiv:1801.01878.
 
- Göttsche L., Kool M., Virtual refinements of the Vafa-Witten formula,  Comm. Math. Phys. 376 (2020), 1-49, arXiv:1703.07196.
 
- Göttsche L., Nakajima H., Yoshioka K., Instanton counting and Donaldson  invariants, J. Differential Geom. 80 (2008), 343-390,  arXiv:math.AG/0606180.
 
- Göttsche L., Nakajima H., Yoshioka K., $K$-theoretic Donaldson invariants  via instanton counting, Pure Appl. Math. Q. 5 (2009),  1029-1111, arXiv:math.AG/0611945.
 
- Göttsche L., Nakajima H., Yoshioka K., Donaldson-Seiberg-Witten from  Mochizuki's formula and instanton counting, Publ. Res. Inst. Math.  Sci. 47 (2011), 307-359, arXiv:1001.5024.
 
- Göttsche L., Zagier D., Jacobi forms and the structure of Donaldson  invariants for $4$-manifolds with $b_+=1$, Selecta Math. (N.S.)  4 (1998), 69-115, arXiv:alg-geom/9612020.
 
- Grojnowski I., Instantons and affine algebras. I. The Hilbert scheme and  vertex operators, Math. Res. Lett. 3 (1996), 275-291,  arXiv:alg-geom/9506020.
 
- Gross J., The homology of moduli stacks of complexes, arXiv:1907.03269.
 
- Halpern-Leistner D., $\Theta$-stratifications, $\Theta$-reductive stacks,  and applications, in Algebraic Geometry: Salt Lake City 2015,  Proc. Sympos. Pure Math., Vol. 97, Amer. Math. Soc., Providence, RI,  2018, 349-379, arXiv:1608.04797.
 
- Harder G., Narasimhan M.S., On the cohomology groups of moduli spaces of vector  bundles on curves, Math. Ann. 212 (1975), 215-248.
 
- Hitchin N.J., The self-duality equations on a Riemann surface, Proc.  London Math. Soc. 55 (1987), 59-126.
 
- Huybrechts D., Lehn M., The geometry of moduli spaces of sheaves, 2nd ed.,  Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010.
 
- Joyce D., Compact manifolds with special holonomy, Oxford Mathematical  Monographs, Oxford University Press, Oxford, 2000.
 
- Joyce D., Configurations in abelian categories. I. Basic properties and  moduli stacks, Adv. Math. 203 (2006), 194-255,  arXiv:math.AG/0312190.
 
- Joyce D., Constructible functions on Artin stacks, J. London Math.  Soc. 74 (2006), 583-606, arXiv:math.AG/0403305.
 
- Joyce D., Configurations in abelian categories. II. Ringel-Hall  algebras, Adv. Math. 210 (2007), 635-706,  arXiv:math.AG/0503029.
 
- Joyce D., Configurations in abelian categories. III. Stability conditions  and identities, Adv. Math. 215 (2007), 153-219,  arXiv:math.AG/0410267.
 
- Joyce D., Motivic invariants of Artin stacks and `stack functions',  Q. J. Math. 58 (2007), 345-392, arXiv:math.AG/0509722.
 
- Joyce D., Configurations in abelian categories. IV. Invariants and changing  stability conditions, Adv. Math. 217 (2008), 125-204,  arXiv:math.AG/0410268.
 
- Joyce D., $D$-manifolds and d-orbifolds: a theory of derived differential  geometry, Preliminary version, 2012, available at  https://people.maths.ox.ac.uk/~joyce/dmanifolds.html.
 
- Joyce D., An introduction to d-manifolds and derived differential geometry, in  Moduli Spaces, London Math. Soc. Lecture Note Ser., Vol. 411,  Cambridge University Press, Cambridge, 2014, 230-281, arXiv:1206.4207.
 
- Joyce D., Kuranishi spaces as a 2-category, in Virtual Fundamental Cycles in  Symplectic Topology, Math. Surveys Monogr., Vol. 237, Amer. Math.  Soc., Providence, RI, 2019, 253-298, arXiv:1510.07444.
 
- Joyce D., Kuranishi spaces and symplectic geometry, Preliminary version of  Vols. I, II, available at  https://people.maths.ox.ac.uk/~joyce/Kuranishi.html.
 
- Joyce D., Ringel-Hall style vertex algebra and Lie algebra structures on  the homology of moduli spaces, Preliminary version, 2020, available at  https://people.maths.ox.ac.uk/~joyce/hall.pdf.
 
- Joyce D., Enumerative invariants and wall-crossing formulae in abelian  categories, arXiv:2111.04694.
 
- Joyce D., Song Y., A theory of generalized Donaldson-Thomas invariants,  Mem. Amer. Math. Soc. 217 (2012), iv+199 pages,  arXiv:0810.5645.
 
- Joyce D., Tanaka Y., Upmeier M., On orientations for gauge-theoretic moduli  spaces, Adv. Math. 362 (2020), 106957, 64 pages,  arXiv:1811.01096.
 
- Kac V., Vertex algebras for beginners, 2nd ed., University Lecture Series,  Vol. 10, Amer. Math. Soc., Providence, RI, 1998.
 
- Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University  Press, Cambridge, 1990.
 
- King A.D., Moduli of representations of finite-dimensional algebras,  Quart. J. Math. Oxford Ser. (2) 45 (1994), 515-530.
 
- Kirwan F.C., Cohomology of quotients in symplectic and algebraic geometry,  Mathematical Notes, Vol. 31, Princeton University Press, Princeton,  NJ, 1984.
 
- Kontsevich M., Soibelman Y., Stability structures, motivic  Donaldson-Thomas invariants and cluster transformations,  arXiv:0811.2435.
 
- Kotschick D., ${\rm SO}(3)$-invariants for $4$-manifolds with $b^+_2=1$,  Proc. London Math. Soc. 63 (1991), 426-448.
 
- Kotschick D., Morgan J.W., ${\rm SO}(3)$-invariants for $4$-manifolds with  $b^+_2=1$. II, J. Differential Geom. 39 (1994),  433-456.
 
- Kronheimer P.B., Four-manifold invariants from higher-rank bundles,  J. Differential Geom. 70 (2005), 59-112,  arXiv:math.GT/0407518.
 
- Kronheimer P.B., Mrowka T.S., Embedded surfaces and the structure of  Donaldson's polynomial invariants, J. Differential Geom.  41 (1995), 573-734.
 
- Laarakker T., Monopole contributions to refined Vafa-Witten invariants,  Geom. Topol. 24 (2020), 2781-2828, arXiv:1810.00385.
 
- Laumon G., Moret-Bailly L., Champs algébriques, textitErgebnisse der  Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in  Mathematics, Vol. 39, Springer-Verlag, Berlin, 2000.
 
- Lepowsky J., Li H., Introduction to vertex operator algebras and their  representations, Progress in Mathematics, Vol. 227, Birkhäuser  Boston, Inc., Boston, MA, 2004.
 
- Mariño M., Moore G., The Donaldson-Witten function for gauge groups of  rank larger than one, Comm. Math. Phys. 199 (1998), 25-69,  arXiv:hep-th/9802185.
 
- Martin S., The Donaldson-Witten function for gauge groups of rank larger  than one, arXiv:math.SG/0001002.
 
- May J.P., A concise course in algebraic topology, Chicago Lectures in  Mathematics, Vol. 1999, University of Chicago Press, Chicago, IL, 1999.
 
- Metzler D., The Donaldson-Witten function for gauge groups of rank larger  than one, arXiv:math.DG/0306176.
 
- Milnor J.W., Stasheff J.D., Characteristic classes, Annals of  Mathematics Studies, Vol. 76, Princeton University Press, Princeton, N. J.;  University of Tokyo Press, Tokyo, 1974.
 
- Mochizuki T., Donaldson type invariants for algebraic surfaces. Transition of  moduli stacks, Lecture Notes in Mathematics, Vol. 1972,  Springer-Verlag, Berlin, 2009.
 
- Moore G., Witten E., Integration over the $u$-plane in Donaldson theory,  Adv. Theor. Math. Phys. 1 (1997), 298-387,  arXiv:alg-geom/9510003.
 
- Mumford D., Fogarty J., Kirwan F., Geometric invariant theory,  Ergebnisse der Mathematik und ihrer Grenzgebiete (2), Vol. 34, 3rd  ed., Springer-Verlag, Berlin, 1994.
 
- Nakajima H., Instantons on ALE spaces, quiver varieties, and Kac-Moody  algebras, Duke Math. J. 76 (1994), 365-416.
 
- Nakajima H., Instantons and affine Lie algebras, Nuclear Phys. B Proc. Suppl., 1996, 154-161,  arXiv:alg-geom/9510003.
 
- Nakajima H., Heisenberg algebra and Hilbert schemes of points on projective  surfaces, Ann. of Math. 145 (1997), 379-388,  arXiv:alg-geom/9507012.
 
- Noohi B., Foundations of topological stacks, I, arXiv:math.AG/0503247.
 
- Noohi B., Homotopy types of topological stacks, Adv. Math.  230 (2012), 2014-2047, arXiv:0808.3799.
 
- Oh J., Thomas R.P., Counting sheaves on Calabi-Yau $4$-folds. I,  arXiv:2009.05542.
 
- Okounkov A., Lectures on K-theoretic computations in enumerative geometry, in  Geometry of Moduli Spaces and Representation Theory, IAS/Park City  Math. Ser., Vol. 24, Amer. Math. Soc., Providence, RI, 2017, 251-380,  arXiv:1512.07363.
 
- Olsson M., Algebraic spaces and stacks, American Mathematical Society  Colloquium Publications, Vol. 62, Amer. Math. Soc., Providence, RI, 2016.
 
- Pantev T., Toën B., Vaquié M., Vezzosi G., Shifted symplectic structures,  Publ. Math. Inst. Hautes Études Sci. 117 (2013),  271-328, arXiv:1111.3209.
 
- Ringel C.M., Hall algebras, in Topics in Algebra, Part 1 (Warsaw, 1988),  Banach Center Publ., Vol. 26, PWN, Warsaw, 1990, 433-447.
 
- Romagny M., Group actions on stacks and applications, Michigan  Math. J. 53 (2005), 209-236.
 
- Rudakov A., Stability for an abelian category, J. Algebra 197  (1997), 231-245.
 
- Shen J., Cobordism invariants of the moduli space of stable pairs,  J. Lond. Math. Soc. 94 (2016), 427-446,  arXiv:1409.4576.
 
- Simpson C., The topological realization of a simplicial presheaf,  arXiv:q-alg/9609004.
 
- Tanaka Y., Thomas R.P., Vafa-Witten invariants for projective surfaces I:  stable case, J. Algebraic Geom. 29 (2020), 603-668,  arXiv:1702.08487.
 
- Tanaka Y., Thomas R.P., Vafa-Witten invariants for projective surfaces II:  semistable case, Pure Appl. Math. Q. 13 (2017), 517-562,  arXiv:1702.08488.
 
- Taubes C.H., Casson's invariant and gauge theory, J. Differential  Geom. 31 (1990), 547-599.
 
- Thaddeus M., Stable pairs, linear systems and the Verlinde formula,  Invent. Math. 117 (1994), 317-353,  arXiv:alg-geom/9210007.
 
- Thomas R.P., A holomorphic Casson invariant for Calabi-Yau 3-folds, and  bundles on $K3$ fibrations, J. Differential Geom. 54  (2000), 367-438, arXiv:math.AG/9806111.
 
- Thomas R.P., Equivariant $K$-theory and refined Vafa-Witten invariants,  Comm. Math. Phys. 378 (2020), 1451-1500,  arXiv:1810.00078.
 
- Toën B., Higher and derived stacks: a global overview, in Algebraic  Geometry - Seattle 2005. Part 1, Proc. Sympos. Pure Math.,  Vol. 80, Amer. Math. Soc., Providence, RI, 2009, 435-487,  arXiv:math.AG/0604504.
 
- Toën B., Derived algebraic geometry, EMS Surv. Math. Sci. 1  (2014), 153-240, arXiv:1401.1044.
 
- Toën B., Vaquié M., Moduli of objects in dg-categories, Ann. Sci.  École Norm. Sup. (4) 40 (2007), 387-444,  arXiv:math.AG/0503269.
 
- Toën B., Vezzosi G., From HAG to DAG: derived moduli stacks, in  Axiomatic, Enriched and Motivic Homotopy Theory, NATO Sci. Ser. II  Math. Phys. Chem., Vol. 131, Kluwer Acad. Publ., Dordrecht, 2004, 173-216,  arXiv:math.AG/0210407.
 
- Toën B., Vezzosi G., Homotopical algebraic geometry. II. Geometric stacks  and applications, Mem. Amer. Math. Soc. 193 (2008),  x+224 pages, arXiv:math.AG/0404373.
 
- Upmeier M., Homological Lie brackets on moduli spaces and pushforward  operations in twisted $K$-theory, Mem. Amer. Math. Soc.  (2021),  25 pages, arXiv:2101.10990.
 
- Witten E., Monopoles and four-manifolds, Math. Res. Lett. 1  (1994), 769-796, arXiv:hep-th/9411102.
 
- Zhu Y., Modular invariance of characters of vertex operator algebras,  J. Amer. Math. Soc. 9 (1996), 237-302.
 
 
 | 
 |