| 
 SIGMA 18 (2022), 099, 18 pages       arXiv:2204.10363     
https://doi.org/10.3842/SIGMA.2022.099 
 
The Linear Span of Uniform Matrix Product States
Claudia De Lazzari a, Harshit J. Motwani b and Tim Seynnaeve c
 a) Dipartimento di Matematica, Università di Trento, Via Sommarive 14, 38123 Povo (TN), Italy
 b) Department of Mathematics: Algebra and Geometry, Ghent University, 9000 Gent, Belgium
 c) Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium
 
 
Received June 03, 2022, in final form December 15, 2022; Published online December 21, 2022
 Abstract 
The variety of uniform matrix product states arises both in algebraic geometry as a natural generalization of the Veronese variety, and in quantum many-body physics as a model for a translation-invariant system of sites placed on a ring. Using methods from linear algebra, representation theory, and invariant theory of matrices, we study the linear span of this variety.
 Key words: matrix product states; invariant theory of matrices. 
pdf (492 kb)  
tex (28 kb)  
 
 
References 
- Affleck I., Kennedy T., Lieb E.H., Tasaki H., Valence bond ground states in  isotropic quantum antiferromagnets, in Condensed Matter Physics and Exactly  Soluble Models, CMS Conf. Proc., Springer, Berlin, 1988, 253-304.
 
- Bachmayr M., Schneider R., Uschmajew A., Tensor networks and hierarchical  tensors for the solution of high-dimensional partial differential equations,  Found. Comput. Math. 16 (2016), 1423-1472.
 
- Barthel T., Lu J., Friesecke G., On the closedness and geometry of tensor  network state sets, Lett. Math. Phys. 112 (2022), 72,  33 pages, arXiv:2108.00031.
 
- Bernardi A., De Lazzari C., Fulvio G., Dimension of tensor network varieties,  Comm. Cont. Math., to appear, arXiv:2101.03148.
 
- Buczyńska W., Buczyński J., Michałek M., The Hackbusch conjecture on  tensor formats, J. Math. Pures Appl. 104 (2015), 749-761,  arXiv:1501.01120.
 
- Chen J., Cheng S., Xie H., Wang L., Xiang T., Equivalence of restricted  Boltzmann machines and tensor network states, Phys. Rev. B  97 (2018), 085104, 16 pages, arXiv:1701.04831.
 
- Christandl M., Gesmundo F., França D.S., Werner A.H., Optimization at the  boundary of the tensor network variety, Phys. Rev. B 103  (2021), 195139, 9 pages, arXiv:2006.16963.
 
- Christandl M., Lucia A., Vrana P., Werner A.H., Tensor network representations  from the geometry of entangled states, SciPost Phys. 9  (2020), 042, 31 pages, arXiv:1809.08185.
 
- Cichocki A., Lee N., Oseledets I., Phan A.H., Zhao Q., Mandic D.P., Tensor  networks for dimensionality reduction and large-scale optimization: Part 1. Low-rank tensor decompositions, Found. Trends Mach. Learn. 9 (2016), 249-429, arXiv:1809.08185.
 
- Critch A., Morton J., Algebraic geometry of matrix product states,  SIGMA 10 (2014), 095, 10 pages, arXiv:1210.2812.
 
- Czapliński A., Michałek M., Seynnaeve T., Uniform matrix product states  from an algebraic geometer's point of view, Adv. in Appl. Math.  142 (2023), 102417, 25 pages, arXiv:1904.07563.
 
- De Lazzari C., Algebraic, geometric and numerical methods for tensor network  varieties, Ph.D. Thesis, University of Trento, 2022.
 
- De Lazzari C., Motwani H.J., Seynnaeve T., The linear span of uniform matrix  product states, GitHub repository, 2022, available at  https://github.com/harshitmotwani2015/uMPS/.
 
- Dvir Z., Malod G., Perifel S., Yehudayoff A., Separating multilinear branching  programs and formulas, in STOC'12 - Proceedings of the 2012 ACM  Symposium on Theory of Computing, ACM, New York, 2012, 615-623.
 
- Fannes M., Nachtergaele B., Werner R.F., Finitely correlated states on quantum  spin chains, Comm. Math. Phys. 144 (1992), 443-490.
 
- Greene J., Traces of matrix products, Electron. J. Linear Algebra  27 (2014), 716-734.
 
- Hackbusch W., Tensor spaces and numerical tensor calculus, Springer  Ser. Comput. Math., Vol. 56, Springer, Cham, 2019.
 
- Hackl L., Guaita T., Shi T., Haegeman J., Demler E., Cirac J.I., Geometry of  variational methods: dynamics of closed quantum systems, SciPost  Phys. 9 (2020), 048, 100 pages, arXiv:2004.01015.
 
- Haegeman J., Mariën M., Osborne T.J., Verstraete F., Geometry of matrix  product states: metric, parallel transport, and curvature, J. Math.  Phys. 55 (2014), 021902, 50 pages, arXiv:1210.7710.
 
- Landsberg J.M., Tensors: geometry and applications, Grad. Stud. Math.,  Vol. 128, Amer. Math. Soc., Providence, RI, 2012.
 
- Landsberg J.M., Qi Y., Ye K., On the geometry of tensor network states,  Quantum Inf. Comput. 12 (2012), 346-354,  arXiv:1105.4449.
 
- Navascues M., Vertesi T., Bond dimension witnesses and the structure of  homogeneous matrix product states, Quantum 2 (2018), 50,  15 pages, arXiv:1509.04507.
 
- Oseledets I.V., Tensor-train decomposition, SIAM J. Sci. Comput.  33 (2011), 2295-2317.
 
- Östlund S., Rommer S., Thermodynamic limit of density matrix renormalization,  Phys. Rev. Lett. 75 (1995), 3537-3540,  arXiv:cond-mat/9503107.
 
- Perez-Garcia D., Verstraete F., Wolf M.M., Cirac J.I., Matrix product state  representations, Quantum Inf. Comput. 7 (2007), 401-430,  arXiv:quant-ph/0608197.
 
- Pólya G., Read R.C., Combinatorial enumeration of groups, graphs, and  chemical compounds, Springer, New York, 1987.
 
- Procesi C., The invariant theory of $n\times n$ matrices, Adv. Math.  19 (1976), 306-381.
 
- Robeva E., Seigal A., Duality of graphical models and tensor networks,  Inf. Inference 8 (2019), 273-288, arXiv:1710.01437.
 
- Sibirskii K.S., Algebraic invariants of a system of matrices, Sib.  Math. J. 9 (1968), 115-124.
 
- Stanley R.P., Algebraic combinatorics: walks, trees, tableaux, and more,  Undergrad. Texts Math., Springer, New York, 2013.
 
 
 | 
 |