| 
 SIGMA 19 (2023), 051, 8 pages       arXiv:2301.03021     
https://doi.org/10.3842/SIGMA.2023.051 
Contribution to the Special Issue on Topological Solitons as Particles 
A Skyrme Model with Novel Chiral Symmetry Breaking
Paul Sutcliffe
 Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK
 
 
Received February 16, 2023, in final form July 21, 2023; Published online July 26, 2023
 Abstract 
An extension of the Skyrme model is presented in which derivative terms are added that break chiral symmetry to isospin symmetry. The theory contains just one new parameter and it reduces to the standard Skyrme model when this symmetry breaking parameter vanishes. The same Faddeev-Bogomolny energy bound applies for all parameter values, but the parameter can be tuned so that the energy of the single Skyrmion is much closer to the bound than in the standard Skyrme model. Applying the rational map approximation to multi-Skyrmions suggests that, for a suitable value of the symmetry breaking parameter, binding energies in this theory may be significantly more realistic than in the standard Skyrme model.
 Key words: Skyrmions; chiral symmetry breaking. 
pdf (1324 kb)  
tex (921 kb)  
 
 
References 
- Adam C., Naya C., Sanchez-Guillen J., Wereszczynski A.,  Bogomol'nyi-Prasad-Sommerfield Skyrme model and nuclear binding  energies, Phys. Rev. Lett. 111 (2013), 232501, 5 pages,  arXiv:1312.2960.
 
- Adam C., Oles K., Wereszczynski A., The dielectric Skyrme model,  Phys. Lett. B 807 (2020), 135560, 6 pages,  arXiv:2005.00018.
 
- Adam C., Sanchez-Guillen J., Wereszczynski A., A Skyrme-type proposal for  baryonic matter, Phys. Lett. B 691 (2010), 105-110,  arXiv:1001.4544.
 
- Atiyah M.F., Manton N.S., Skyrmions from instantons, Phys. Lett. B  222 (1989), 438-442.
 
- Battye R.A., Sutcliffe P.M., Skyrmions, fullerenes and rational maps,  Rev. Math. Phys. 14 (2002), 29-85,  arXiv:hep-th/0103026.
 
- Faddeev L.D., Some comments on the many-dimensional solitons, Lett.  Math. Phys. 1 (1976), 289-293.
 
- Ferreira L.A., Exact self-duality in a modified Skyrme model, J. High  Energy Phys. 2017 (2017), no. 7, 039, 13 pages,  arXiv:1705.01824.
 
- Ferreira L.A., Livramento L.R., Quasi-self-dual Skyrme model, Phys.  Rev. D 106 (2022), 045003, 17 pages, arXiv:2205.13002.
 
- Gillard M., Harland D., Speight M., Skyrmions with low binding energies,  Nuclear Phys. B 895 (2015), 272-287, arXiv:1501.05455.
 
- Gudnason S.B., Loosening up the Skyrme model, Phys. Rev. D 93  (20216), 065048, 19 pages, arXiv:1601.05024.
 
- Gudnason S.B., Speight J.M., Realistic classical binding energies in the  $\omega$-Skyrme model, J. High Energy Phys. 2020  (2020), no. 7, 184, 42 pages, arXiv:2004.12862.
 
- Harland D., Topological energy bounds for the Skyrme and Faddeev models with  massive pions, Nuclear Phys. B 728 (2014), 518-523,  arXiv:1311.2403.
 
- Houghton C.J., Manton N.S., Sutcliffe P.M., Rational maps, monopoles and  skyrmions, Nuclear Phys. B 510 (1998), 507-537,  arXiv:hep-th/9705151.
 
- Manton N.S., Skyrmions - a theory of nuclei, World Scientific, London, 2022.
 
- Naya C., Skyrmions and clustering in light nuclei, Phys. Rev. Lett.  121 (2018), 232002, 5 pages, arXiv:1811.02064.
 
- Naya C., Sutcliffe P., Skyrmions in models with pions and rho mesons, J. High  Energy Phys. 2018 (2018), no. 5, 174, 14 pages,  arXiv:1803.06098.
 
- Skyrme T.H.R., A unified field theory of mesons and baryons, Nuclear  Phys. 31 (1962), 556-569.
 
- Sutcliffe P., Skyrmions, instantons and holography, J. High Energy  Phys. 2010 (2010), no. 8, 019, 25 pages, arXiv:1003.0023.
 
- Sutcliffe P., Skyrmions in a truncated BPS theory, J. High Energy  Phys. 2011 (2011), no. 4, 045, 13 pages, arXiv:1101.2402.
 
 
 | 
 |