| 
 SIGMA 19 (2023), 074, 20 pages       arXiv:2306.04638     
https://doi.org/10.3842/SIGMA.2023.074 
Contribution to the Special Issue on Asymptotics and Applications of Special Functions in Memory of Richard Paris 
Sun's Series via Cyclotomic Multiple Zeta Values
Yajun Zhou ab
 a) Program in Applied and Computational Mathematics (PACM), Princeton University, Princeton, NJ 08544, USA
 b) Academy of Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, P.R. China
 
 
Received June 13, 2023, in final form September 29, 2023; Published online October 12, 2023
 Abstract 
We prove and generalize several recent conjectures of Z.-W. Sun surrounding binomial coefficients and harmonic numbers. We show that Sun's series and their analogs can be represented as cyclotomic multiple zeta values of levels $N\in\{4,8,12,16,24\}$, namely Goncharov's multiple polylogarithms evaluated at $N$-th roots of unity.
 Key words: Sun's series; binomial coefficients; harmonic numbers; cyclotomic multiple zeta values. 
pdf (537 kb)  
tex (25 kb)  
 
 
References 
- Ablinger J., Discovering and proving infinite binomial sums identities,  Exp. Math. 26 (2017), 62-71, arXiv:1507.01703.
 
- Ablinger J., Discovering and proving infinite Pochhammer sum identities,  Exp. Math. 31 (2022), 309-323, arXiv:1902.11001.
 
- Ablinger J., Blümlein J., Raab C.G., Schneider C., Iterated binomial sums and  their associated iterated integrals, J. Math. Phys. 55  (2014), 112301, 57 pages, arXiv:1407.1822.
 
- Ablinger J., Blümlein J., Schneider C., Harmonic sums and polylogarithms  generated by cyclotomic polynomials, J. Math. Phys. 52  (2011), 102301, 52 pages, arXiv:1105.6063.
 
- Ablinger J., Blümlein J., Schneider C., Analytic and algorithmic aspects of  generalized harmonic sums and polylogarithms, J. Math. Phys.  54 (2013), 082301, 74 pages, arXiv:1302.0378.
 
- Au K.C., Evaluation of one-dimensional polylogarithmic integral, with  applications to infinite series, arXiv:2007.03957.
 
- Au K.C., Iterated integrals and multiple polylogarithm at algebraic arguments, arXiv:2201.01676,  Software available at  https://www.researchgate.net/publication/357601353_Mathematica_package_%  MultipleZetaValues and  https://www.wolframcloud.com/obj/pisco125/MultipleZetaValues-1.2.0.paclet.
 
- Charlton S., Gangl H., Lai L., Xu C., Zhao J., On two conjectures of Sun  concerning Apéry-like series, Forum Math., to appear,  arXiv:2210.14704.
 
- Davydychev A.I., Kalmykov M.Yu., New results for the $\varepsilon$-expansion of  certain one-, two- and three-loop Feynman diagrams, Nuclear  Phys. B 605 (2001), 266-318, arXiv:hep-th/0012189.
 
- Davydychev A.I., Kalmykov M.Yu., Massive Feynman diagrams and inverse binomial  sums, Nuclear Phys. B 699 (2004), 3-64,  arXiv:hep-th/0303162.
 
- Frellesvig H., Tommasini D., Wever C., On the reduction of generalized  polylogarithms to $\mathrm{Li}_ n$ and $\mathrm{Li}_{2, 2}$ and on the  evaluation thereof, J. High Energy Phys. 2016 (2016),  no. 3, 189, 35 pages, arXiv:1601.02649v3.
 
- Goncharov A.B., The double logarithm and Manin's complex for modular curves,  Math. Res. Lett. 4 (1997), 617-636.
 
- Goncharov A.B., Multiple polylogarithms, cyclotomy and modular complexes,  Math. Res. Lett. 5 (1998), 497-516, arXiv:1105.2076.
 
- Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, Elsevier, Amsterdam, 2007.
 
- Kalmykov M.Yu., Veretin O., Single-scale diagrams and multiple binomial sums,  Phys. Lett. B 483 (2000), 315-323,  arXiv:hep-th/0004010.
 
- Kalmykov M.Yu., Ward B.F.L., Yost S.A., Multiple (inverse) binomial sums of  arbitrary weight and depth and the all-order $\varepsilon$-expansion of  generalized hypergeometric functions, J. High Energy Phys.  2007 (2007), no. 10, 048, 26 pages, arXiv:0707.3654.
 
- Mező I., Nonlinear Euler sums, Pacific J. Math. 272  (2014), 201-226.
 
- Panzer E., Algorithms for the symbolic integration of hyperlogarithms with  applications to Feynman integrals, Comput. Phys. Commun.  188 (2015), 148-166, arXiv:1403.3385.
 
- Sun Z.-W., Series with summands involving harmonic numbers, in Combinatorial and  Additive Number Theory, to appear, arXiv:2210.07238v8.
 
- Weinzierl S., Expansion around half-integer values, binomial sums, and inverse  binomial sums, J. Math. Phys. 45 (2004), 2656-2673,  arXiv:hep-ph/0402131.
 
- Xu C., Zhao J., Sun's three conjectures on Apéry-like sums involving  harmonic numbers, 2022, arXiv:2203.04184.
 
- Xu C., Zhao J., A note on Sun's conjectures on Apéry-like sums involving  Lucas sequences and harmonic numbers, arXiv:2204.08277.
 
- Zhou Y., Hyper-Mahler measures via Goncharov-Deligne cyclotomy,  arXiv:2210.17243v3.
 
 
 | 
 |