Processing math: 100%

Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 011, 14 pages      arXiv:2308.01595      https://doi.org/10.3842/SIGMA.2024.011
Contribution to the Special Issue on Differential Geometry Inspired by Mathematical Physics in honor of Jean-Pierre Bourguignon for his 75th birthday

Twisted Sectors for Lagrangian Floer Theory on Symplectic Orbifolds

Bohui Chen a, Kaoru Ono b and Bai-Ling Wang c
a) School of Mathematics, Sichuan University, Chengdu 610064, P.R. China
b) Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan
c) Mathematical Sciences Institute, The National Australian University, Canberra ACT 2601, Australia

Received August 04, 2023, in final form January 16, 2024; Published online January 30, 2024; References corrected February 05, 2024

Abstract
The notion of twisted sectors play a crucial role in orbifold Gromov-Witten theory. We introduce the notion of dihedral twisted sectors in order to construct Lagrangian Floer theory on symplectic orbifolds and discuss related issues.

Key words: Floer theory; orbifold Lagrangians; dihedral twisted sectors.

pdf (466 kb)   tex (23 kb)         [previous version:  pdf (464 kb)   tex (23 kb)]

References

  1. Adem A., Leida J., Ruan Y., Orbifolds and stringy topology, Cambridge Tracts in Math., Vol. 171, Cambridge University Press, Cambridge, 2007.
  2. Chen B., Du C.-Y., Liao A.-L., Banach orbifold structure on groupoids of morphisms of orbifolds, Differential Geom. Appl. 87 (2023), 101975, 41 pages.
  3. Chen W., Ruan Y., Orbifold Gromov-Witten theory, in Orbifolds in Mathematics and Physics, Contemp. Math., Vol. 310, American Mathematical Society, Providence, RI, 2002, 25-85, arXiv:math.AG/0103156.
  4. Cho C.-H., Poddar M., Holomorphic orbi-discs and Lagrangian Floer cohomology of symplectic toric orbifolds, J. Differential Geom. 98 (2014), 21-116, arXiv:1206.3994.
  5. Floer A., Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), 513-547.
  6. Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory: anomaly and obstruction. Part I, AMS/IP Stud. Adv. Math., Vol. 46.1, American Mathematical Society, Providence, RI, 2009.
  7. Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory: anomaly and obstruction. Part II, AMS/IP Stud. Adv. Math., Vol. 46.2, American Mathematical Society, Providence, RI, 2009.
  8. Fukaya K., Oh Y.-G., Ohta H., Ono K., Antisymplectic involution and Floer cohomology, Geom. Topol. 21 (2017), 1-106, arXiv:0912.2646.
  9. Fukaya K., Oh Y.-G., Ohta H., Ono K., Construction of Kuranishi structures on the moduli spaces of pseudo holomorphic disks: I, in Surveys in Differential Geometry 2017, Surv. Differ. Geom., Vol. 22, International Press, Somerville, MA, 2018, 133-190, arXiv:1710.01459.
  10. Fukaya K., Oh Y.-G., Ohta H., Ono K., Construction of Kuranishi structures on the moduli spaces of pseudo holomorphic disks: II, arXiv:1808.06106.
  11. Fukaya K., Oh Y.-G., Ohta H., Ono K., Kuranishi structures and virtual fundamental chains, Springer Monogr. Math., Springer, Singapore, 2020.
  12. Fukaya K., Ono K., Arnold conjecture and Gromov-Witten invariant, Topology 38 (1999), 933-1048.
  13. Li J., Tian G., Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds, in Topics in Symplectic 4-Manifolds, First Int. Press Lect. Ser. I, International Press, Cambridge, MA, 1998, 47-83, arXiv:alg-geom/9608032.
  14. Moerdijk I., Mrčun J., Introduction to foliations and Lie groupoids, Cambridge Stud. Adv. Math., Vol. 91, Cambridge University Press, Cambridge, 2003.
  15. Oh Y.-G., Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I, Comm. Pure Appl. Math. 46 (1993), 949-993.
  16. Oh Y.-G., Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. II. (CPn,RPn), Comm. Pure Appl. Math. 46 (1993), 995-1012.
  17. Ono K., Sign convention for A-operations in Bott-Morse case, Preprint, available upon request.
  18. Ruan Y., Virtual neighborhoods and pseudo-holomorphic curves, Turkish J. Math. 23 (1999), 161-231, arXiv:alg-geom/9611021.
  19. Ruan Y., Tian G., A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995), 259-367, arXiv:1110.3751.
  20. Satake I., The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan 9 (1957), 464-492.
  21. Siebert B., Symplectic Gromov-Witten invariants, in New Trends in Algebraic Geometry, London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge University Press, Cambridge, 1999, 375-424, arXiv:dg-ga/9608005.

Previous article  Next article  Contents of Volume 20 (2024)