|
SIGMA 20 (2024), 037, 19 pages arXiv:2310.18759
https://doi.org/10.3842/SIGMA.2024.037
Compatible Poisson Brackets Associated with Elliptic Curves in $G(2,5)$
Nikita Markarian a and Alexander Polishchuk bc
a) Université de Strasbourg, France
b) Department of Mathematics, University of Oregon, Eugene, OR 97403, USA
c) National Research University Higher School of Economics, Moscow, Russia
Received December 05, 2023, in final form April 27, 2024; Published online May 07, 2024
Abstract
We prove that a pair of Feigin-Odesskii Poisson brackets on ${\mathbb P}^4$ associated with elliptic curves given as linear sections of the Grassmannian $G(2,5)$ are compatible if and only if this pair of elliptic curves is contained in a del Pezzo surface obtained as a linear section of $G(2,5)$.
Key words: Poisson bracket; bi-Hamiltonian structure; elliptic curve; triple Massey products.
pdf (455 kb)
tex (118 kb)
References
- Feigin B.L., Odesskii A.V., Vector bundles on an elliptic curve and Sklyanin algebras, in Topics in Quantum Groups and Finite-Type Invariants, Amer. Math. Soc. Transl. Ser. 2, Vol. 185, American Mathematical Society, Providence, RI, 1998, 65-84, arXiv:q-alg/9509021.
- Gorodetsky L., Markarian N., On conormal Lie algebras of Feigin-Odesskii Poisson structures, arXiv:2403.02805.
- Hua Z., Polishchuk A., Elliptic bihamiltonian structures from relative shifted Poisson structures, J. Topol. 16 (2023), 1389-1422, arXiv:2007.12351.
- Kapranov M.M., On the derived category of coherent sheaves on Grassmann manifolds, Math. USSR Izv. 24 (1985), 183-192.
- Keller B., Introduction to $A$-infinity algebras and modules, Homology Homotopy Appl. 3 (2001), 1-35, arXiv:math.RA/9910179.
- Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1995.
- Markarian N., Polishchuk A., Compatible Feigin-Odesskii Poisson brackets, Manuscripta Math. 173 (2024), 907-923, arXiv:2207.07770.
- Nordstrom V., Polishchuk A., Ten compatible Poisson brackets on $\mathbb P^5$, SIGMA 19 (2023), 059, 10 pages, arXiv:2301.13417.
- Odesskii A., Wolf T., Compatible quadratic Poisson brackets related to a family of elliptic curves, J. Geom. Phys. 63 (2013), 107-117, arXiv:1204.1299.
- Polishchuk A., Poisson structures and birational morphisms associated with bundles on elliptic curves, Internat. Math. Res. Notices 1998 (1998), 683-703.
- Rubtsov V., Quadro-cubic Cremona transformations and Feigin-Odesskii-Sklyanin algebras with 5 generators, in Recent Developments in Integrable Systems and Related Topics of Mathematical Physics, Springer Proc. Math. Stat., Vol. 273, Springer, Cham, 2018, 75-106.
|
|