Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 041, 23 pages      arXiv:2208.05526      https://doi.org/10.3842/SIGMA.2024.041

Skew Symplectic and Orthogonal Schur Functions

Naihuan Jing a, Zhijun Li b and Danxia Wang b
a) Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
b) School of Science, Huzhou University, Huzhou, Zhejiang 313000, P.R. China

Received August 28, 2023, in final form May 12, 2024; Published online May 21, 2024

Abstract
Using the vertex operator representations for symplectic and orthogonal Schur functions, we define two families of symmetric functions and show thatthey are the skew symplectic and skew orthogonal Schur polynomials defined implicitly by Koike and Terada and satisfy the general branching rules. Furthermore, we derive the Jacobi-Trudi identities and Gelfand-Tsetlin patterns for these symmetric functions. Additionally, the vertex operator method yields their Cauchy-type identities. This demonstrates that vertex operator representations serve not only as a tool for studying symmetric functions but also offers unified realizations for skew Schur functions of types A, C, and D.

Key words: skew orthogonal/symplectic Schur functions; Jacobi-Trudi identity; Gelfand-Tsetlin patterns; vertex operators.

pdf (442 kb)   tex (24 kb)  

References

  1. Albion S.P., Fischer I., Höngesberg H., Schreier-Aigner F., Skew symplectic and orthogonal characters through lattice paths, arXiv:2305.11730.
  2. Ayyer A., Fischer I., Bijective proofs of skew Schur polynomial factorizations, J. Combin. Theory Ser. A 174 (2020), 105241, 40 pages, arXiv:1905.05226.
  3. Baker T.H., Vertex operator realization of symplectic and orthogonal $S$-functions, J. Phys. A 29 (1996), 3099-3117.
  4. Betea D., Correlations for symplectic and orthogonal Schur measures, arXiv:1804.08495.
  5. Cuenca C., Gorin V., $q$-deformed character theory for infinite-dimensional symplectic and orthogonal groups, Selecta Math. (N.S.) 26 (2020), 40, 55 pages, arXiv:1812.06523.
  6. Date E., Kashiwara M., Jimbo M., Miwa T., Transformation groups for soliton equations, in Nonlinear Integrable Systems - Classical Theory and Quantum Theory (Kyoto, 1981), World Scientific Publishing, Singapore, 1983, 39-119.
  7. Fauser B., Jarvis P.D., King R.C., Plethysms, replicated Schur functions and series, with applications to vertex operators, J. Phys. A 43 (2010), 405202, 30 pages, arXiv:1006.4266.
  8. Frenkel I.B., Kac V.G., Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980), 23-66.
  9. Jing N., Vertex operators, symmetric functions, and the spin group $\Gamma_n$, J. Algebra 138 (1991), 340-398.
  10. Jing N., Symmetric polynomials and $U_q(\widehat{\rm sl}{}_2)$, Represent. Theory 4 (2000), 46-63, arXiv:math.QA/9902109.
  11. Jing N., Li Z., A note on Cauchy's formula, Adv. in Appl. Math. 153 (2024), 102630, 14 pages, arXiv:2202.11175.
  12. Jing N., Nie B., Vertex operators, Weyl determinant formulae and Littlewood duality, Ann. Comb. 19 (2015), 427-442, arXiv:1308.2792.
  13. Jing N., Rozhkovskaya N., Vertex operators arising from Jacobi-Trudi identities, Comm. Math. Phys. 346 (2016), 679-701, arXiv:1411.4725.
  14. Koike K., Terada I., Young-diagrammatic methods for the representation theory of the classical groups of type $B_n$, $C_n$, $D_n$, J. Algebra 107 (1987), 466-511.
  15. Koike K., Terada I., Young diagrammatic methods for the restriction of representations of complex classical Lie groups to reductive subgroups of maximal rank, Adv. Math. 79 (1990), 104-135.
  16. Lam T., A combinatorial generalization of the Boson-Fermion correspondence, Math. Res. Lett. 13 (2006), 377-392, arXiv:math.CO/0507341.
  17. Li H., Tan S., Wang Q., A certain Clifford-like algebra and quantum vertex algebras, Israel J. Math. 216 (2016), 441-470, arXiv:1505.07165.
  18. Littlewood D.E., The theory of group characters and matrix representations of groups, Oxford University Press, New York, 1940.
  19. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1995.
  20. Meckes E.S., The random matrix theory of the classical compact groups, Cambridge Tracts in Math., Vol. 218, Cambridge University Press, Cambridge, 2019.
  21. Okounkov A., Infinite wedge and random partitions, Selecta Math. (N.S.) 7 (2001), 57-81, arXiv:math.RT/9907127.
  22. Proctor R.A., Young tableaux, Gel'fand patterns, and branching rules for classical groups, J. Algebra 164 (1994), 299-360.
  23. Shimozono M., Zabrocki M., Deformed universal characters for classical and affine algebras, J. Algebra 299 (2006), 33-61, arXiv:math.CO/0404288.
  24. Stanley R.P., Enumerative combinatorics. Vol. 2, Cambridge Stud. Adv. Math., Vol. 62, Cambridge University Press, Cambridge, 1999.
  25. Sundaram S., Tableaux in the representation theory of the classical Lie groups, in Invariant Theory and Tableaux (Minneapolis, MN, 1988), IMA Vol. Math. Appl., Vol. 19, Springer, New York, 1990, 191-225.
  26. Weyl H., The classical groups. Their invariants and representations, Princeton Math. Ser., Princeton University Press, Princeton, NJ, 1946.

Previous article  Next article  Contents of Volume 20 (2024)