|
SIGMA 20 (2024), 059, 10 pages arXiv:2212.02355
https://doi.org/10.3842/SIGMA.2024.059
Contribution to the Special Issue on Basic Hypergeometric Series Associated with Root Systems and Applications in honor of Stephen C. Milne
A New (But Very Nearly Old) Proof of the Rogers-Ramanujan Identities
Hjalmar Rosengren
Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Göteborg, Sweden
Received March 25, 2024, in final form June 27, 2024; Published online July 02, 2024
Abstract
We present a new proof of the Rogers-Ramanujan identities. Surprisingly, all its ingredients are available already in Rogers seminal paper from 1894, where he gave a considerably more complicated proof.
Key words: Rogers-Ramanujan identities; constant term identities.
pdf (311 kb)
tex (14 kb)
References
- Andrews G.E., $q$-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Reg. Conf. Ser. Math., Vol. 66, American Mathematical Society, Providence, RI, 1986.
- Andrews G.E., On the proofs of the Rogers-Ramanujan identities, in $q$-Series and Partitions (Minneapolis, MN, 1988), IMA Vol. Math. Appl., Vol. 18, Springer, New York, 1989, 1-14.
- Andrews G.E., Knopfmacher A., Paule P., An infinite family of Engel expansions of Rogers-Ramanujan type, Adv. in Appl. Math. 25 (2000), 2-11.
- Andrews G.E., Berndt B.C., Ramanujan's lost notebook. Part I, Springer, New York, 2005.
- Boulet C., Pak I., A combinatorial proof of the Rogers-Ramanujan and Schur identities, J. Combin. Theory Ser. A 113 (2006), 1019-1030, arXiv:math.CO/0411072.
- Corteel S., Rogers-Ramanujan identities and the Robinson-Schensted-Knuth correspondence, Proc. Amer. Math. Soc. 145 (2017), 2011-2022.
- Fulman J., A probabilistic proof of the Rogers-Ramanujan identities, Bull. London Math. Soc. 33 (2001), 397-407, arXiv:math.CO/0001078.
- Garrett K., Ismail M.E.H., Stanton D., Variants of the Rogers-Ramanujan identities, Adv. in Appl. Math. 23 (1999), 274-299.
- Gessel I., Stanton D., Applications of $q$-Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc. 277 (1983), 173-201.
- Hardy G.H., Ramanujan. Twelve lectures on subjects suggested by his life and work, Cambridge University Press, Cambridge, 1940.
- Ismail M.E.H., A simple proof of Ramanujan's $_{1}\psi_{1}$ sum, Proc. Amer. Math. Soc. 63 (1977), 185-186.
- Mc Laughlin J., Sills A.V., Zimmer P., Rogers-Ramanujan-Slater type identities, Electron. J. Combin. 15 (2008), 1-59, arXiv:1901.00946.
- Paule P., Short and easy computer proofs of the Rogers-Ramanujan identities and of identities of similar type, Electron. J. Combin. 1 (1994), R10, 9 pages.
- Rogers L.J., On the expansion of some infinite products, Proc. Lond. Math. Soc. 24 (1893), 337-352.
- Rogers L.J., Second memoir on the expansion of certain infinite products, Proc. Lond. Math. Soc. 25 (1893), 318-343.
- Rogers L.J., On two theorems of combinatory analysis and some allied identities, Proc. Lond. Math. Soc. 16 (1917), 315-336.
- Rosengren H., New proofs of the septic Rogers-Ramanujan identities, arXiv:2302.02312.
- Sills A.V., Derivation of identities of the Rogers-Ramanujan type by the method of constant terms, Master Thesis, Pennsylvania State University, 1994, arXiv:2211.14717.
- Sills A.V., Finite Rogers-Ramanujan type identities, Electron. J. Combin. 10 (2003), 13, 122 pages, arXiv:1901.02435.
- Slater L.J., Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147-167.
- Stembridge J.R., Hall-Littlewood functions, plane partitions, and the Rogers-Ramanujan identities, Trans. Amer. Math. Soc. 319 (1990), 469-498.
- Tsuchioka S., A proof of the second Rogers-Ramanujan identity via Kleshchev multipartitions, Proc. Japan Acad. Ser. A Math. Sci. 99 (2023), 23-26, arXiv:2205.06038.
- Watson G.N., A note on Lerch's functions, Q. J. Math. 8 (1937), 43-47.
|
|