Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 059, 10 pages      arXiv:2212.02355      https://doi.org/10.3842/SIGMA.2024.059
Contribution to the Special Issue on Basic Hypergeometric Series Associated with Root Systems and Applications in honor of Stephen C. Milne

A New (But Very Nearly Old) Proof of the Rogers-Ramanujan Identities

Hjalmar Rosengren
Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Göteborg, Sweden

Received March 25, 2024, in final form June 27, 2024; Published online July 02, 2024

Abstract
We present a new proof of the Rogers-Ramanujan identities. Surprisingly, all its ingredients are available already in Rogers seminal paper from 1894, where he gave a considerably more complicated proof.

Key words: Rogers-Ramanujan identities; constant term identities.

pdf (311 kb)   tex (14 kb)  

References

  1. Andrews G.E., $q$-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Reg. Conf. Ser. Math., Vol. 66, American Mathematical Society, Providence, RI, 1986.
  2. Andrews G.E., On the proofs of the Rogers-Ramanujan identities, in $q$-Series and Partitions (Minneapolis, MN, 1988), IMA Vol. Math. Appl., Vol. 18, Springer, New York, 1989, 1-14.
  3. Andrews G.E., Knopfmacher A., Paule P., An infinite family of Engel expansions of Rogers-Ramanujan type, Adv. in Appl. Math. 25 (2000), 2-11.
  4. Andrews G.E., Berndt B.C., Ramanujan's lost notebook. Part I, Springer, New York, 2005.
  5. Boulet C., Pak I., A combinatorial proof of the Rogers-Ramanujan and Schur identities, J. Combin. Theory Ser. A 113 (2006), 1019-1030, arXiv:math.CO/0411072.
  6. Corteel S., Rogers-Ramanujan identities and the Robinson-Schensted-Knuth correspondence, Proc. Amer. Math. Soc. 145 (2017), 2011-2022.
  7. Fulman J., A probabilistic proof of the Rogers-Ramanujan identities, Bull. London Math. Soc. 33 (2001), 397-407, arXiv:math.CO/0001078.
  8. Garrett K., Ismail M.E.H., Stanton D., Variants of the Rogers-Ramanujan identities, Adv. in Appl. Math. 23 (1999), 274-299.
  9. Gessel I., Stanton D., Applications of $q$-Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc. 277 (1983), 173-201.
  10. Hardy G.H., Ramanujan. Twelve lectures on subjects suggested by his life and work, Cambridge University Press, Cambridge, 1940.
  11. Ismail M.E.H., A simple proof of Ramanujan's $_{1}\psi_{1}$ sum, Proc. Amer. Math. Soc. 63 (1977), 185-186.
  12. Mc Laughlin J., Sills A.V., Zimmer P., Rogers-Ramanujan-Slater type identities, Electron. J. Combin. 15 (2008), 1-59, arXiv:1901.00946.
  13. Paule P., Short and easy computer proofs of the Rogers-Ramanujan identities and of identities of similar type, Electron. J. Combin. 1 (1994), R10, 9 pages.
  14. Rogers L.J., On the expansion of some infinite products, Proc. Lond. Math. Soc. 24 (1893), 337-352.
  15. Rogers L.J., Second memoir on the expansion of certain infinite products, Proc. Lond. Math. Soc. 25 (1893), 318-343.
  16. Rogers L.J., On two theorems of combinatory analysis and some allied identities, Proc. Lond. Math. Soc. 16 (1917), 315-336.
  17. Rosengren H., New proofs of the septic Rogers-Ramanujan identities, arXiv:2302.02312.
  18. Sills A.V., Derivation of identities of the Rogers-Ramanujan type by the method of constant terms, Master Thesis, Pennsylvania State University, 1994, arXiv:2211.14717.
  19. Sills A.V., Finite Rogers-Ramanujan type identities, Electron. J. Combin. 10 (2003), 13, 122 pages, arXiv:1901.02435.
  20. Slater L.J., Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147-167.
  21. Stembridge J.R., Hall-Littlewood functions, plane partitions, and the Rogers-Ramanujan identities, Trans. Amer. Math. Soc. 319 (1990), 469-498.
  22. Tsuchioka S., A proof of the second Rogers-Ramanujan identity via Kleshchev multipartitions, Proc. Japan Acad. Ser. A Math. Sci. 99 (2023), 23-26, arXiv:2205.06038.
  23. Watson G.N., A note on Lerch's functions, Q. J. Math. 8 (1937), 43-47.

Previous article  Next article  Contents of Volume 20 (2024)