Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 061, 47 pages      arXiv:2206.03137      https://doi.org/10.3842/SIGMA.2024.061

Reduction of $L_\infty$-Algebras of Observables on Multisymplectic Manifolds

Casey Blacker a, Antonio Michele Miti b and Leonid Ryvkin c
a) Department of Mathematical Sciences, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA
b) Dipartimento di Matematica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
c) Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbann, France

Received October 24, 2023, in final form June 24, 2024; Published online July 03, 2024

Abstract
We develop a reduction scheme for the $L_\infty$-algebra of observables on a premultisymplectic manifold $(M,\omega)$ in the presence of a compatible Lie algebra action $\mathfrak{g}\curvearrowright M$ and subset $N\subset M$. This reproduces in the symplectic setting the Poisson algebra of observables on the Marsden-Weinstein-Meyer symplectic reduced space, whenever the reduced space exists, but is otherwise distinct from the Dirac, Śniatycki-Weinstein, and Arms-Cushman-Gotay observable reduction schemes. We examine various examples, including multicotangent bundles and multiphase spaces, and we conclude with a discussion of applications to classical field theories and quantization.

Key words: $L_\infty$-algebras; multisymplectic manifolds; moment maps.

pdf (795 kb)   tex (64 kb)  

References

  1. Abraham R., Marsden J., Foundations of mechanics, 2nd ed., Benjamin, Reading, MA, 1978.
  2. Albert C., Le théorème de réduction de Marsden-Weinstein en géométrie cosymplectique et de contact, J. Geom. Phys. 6 (1989), 627-649.
  3. Alekseev A., Malkin A., Meinrenken E., Lie group valued moment maps, J. Differential Geom. 48 (1998), 445-495, arXiv:dg-ga/9707021.
  4. Arms J.M., Reduction of Poisson algebras at nonzero momentum values, J. Geom. Phys. 21 (1996), 81-95.
  5. Arms J.M., Cushman R.H., Gotay M.J., A universal reduction procedure for Hamiltonian group actions, in The Geometry of Hamiltonian Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., Vol. 22, Springer, New York, 1991, 33-51.
  6. Arms J.M., Gotay M.J., Jennings G., Geometric and algebraic reduction for singular momentum maps, Adv. Math. 79 (1990), 43-103.
  7. Atiyah M.F., Bott R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523-615.
  8. Baez J.C., Hoffnung A.E., Rogers C.L., Categorified symplectic geometry and the classical string, Comm. Math. Phys. 293 (2010), 701-725, arXiv:0808.0246.
  9. Barnich G., Fulp R., Lada T., Stasheff J., The sh Lie structure of Poisson brackets in field theory, Comm. Math. Phys. 191 (1998), 585-601, arXiv:hep-th/9702176.
  10. Barron T., Serajelahi B., Berezin-Toeplitz quantization, hyperkähler manifolds, and multisymplectic manifolds, Glasg. Math. J. 59 (2017), 167-187, arXiv:1406.5159.
  11. Barron T., Shafiee M., Multisymplectic structures induced by symplectic structures, J. Geom. Phys. 136 (2019), 1-13.
  12. Blacker C., Reduction of multisymplectic manifolds, Lett. Math. Phys 111 (2021), 64, 30 pages, arXiv:2002.10062.
  13. Bursztyn H., Cavalcanti G.R., Gualtieri M., Reduction of Courant algebroids and generalized complex structures, Adv. Math. 211 (2007), 726-765, arXiv:math.DG/0509640.
  14. Bursztyn H., Martinez Alba N., Rubio R., On higher Dirac structures, Int. Math. Res. Not. 2019 (2019), 1503-1542, arXiv:1611.02292.
  15. Callies M., Frégier Y., Rogers C.L., Zambon M., Homotopy moment maps, Adv. Math. 303 (2016), 954-1043, arXiv:1304.2051.
  16. Cantrijn F., Ibort A., de León, M., On the geometry of multisymplectic manifolds, J. Aust. Math. Soc. 66 (1999), 303-330.
  17. Cendra H., Marsden J.E., Ratiu T.S., Geometric mechanics, lagrangian reduction, and nonholonomic systems, in Mathematics Unlimited - 2001 and Beyond, Springer, Berlin, 2001, 221-273.
  18. Cushman R., Śniatycki J., Differential structure of orbit spaces, Canad. J. Math. 53 (2001), 715-755.
  19. da Silva A.C., Lectures on symplectic geometry, Lecture Notes in Math., Vol. 1764, Springer, Berlin, 2008.
  20. de León M., Lainz Valcázar M., Contact Hamiltonian systems, J. Math. Phys. 60 (2019), 102902, 18 pages, arXiv:1811.03367.
  21. de Lucas J., Gràcia X., Rivas X., Román-Roy N., Vilariño S., Reduction and reconstruction of multisymplectic Lie systems, J. Phys. A 55 (2022), 295204, 34 pages, arXiv:2202.13748.
  22. DeBellis J., Sämann C., Szabo R.J., Quantized Nambu-Poisson manifolds and $n$-Lie algebras, J. Math. Phys. 51 (2010), 122303, 34 pages, arXiv:1001.3275.
  23. DeBellis J., Sämann C., Szabo R.J., Quantized Nambu-Poisson manifolds in a 3-Lie algebra reduced model, J. High Energy Phys. 2011 (2011), no. 4, 075, 23 pages, arXiv:1012.2236.
  24. Dehling M., On weak Lie 3-algebras, arXiv:1710.11104.
  25. Dippell M., Esposito C., Waldmann S., Coisotropic triples, reduction and classical limit, Doc. Math. 24 (2019), 1811-1853, arXiv:1812.09703.
  26. Dirac P.A.M., Lectures on quantum mechanics, Belfer Grad. Sch. Sci. Monogr. Ser., Vol. 2, Belfer Graduate School of Science, New York, 1967.
  27. Echeverría-Enríquez A., Muñoz Lecanda M.C., Román-Roy N., Remarks on multisymplectic reduction, Rep. Math. Phys. 81 (2018), 415-424, arXiv:1712.09901.
  28. Esposito C., Poisson reduction, in Geometric Methods in Physics, Trends Math., Birkhäuser, Cham, 2013, 131-142, arXiv:1106.3878.
  29. Fiorenza D., Rogers C.L., Schreiber U., $L_\infty$-algebras of local observables from higher prequantum bundles, Homology Homotopy Appl. 16 (2014), 107-142, arXiv:1304.6292.
  30. Fiorenza D., Rogers C.L., Schreiber U., Higher $U(1)$-gerbe connections in geometric prequantization, Rev. Math. Phys. 28 (2016), 1650012, 72 pages, arXiv:1304.0236.
  31. Frégier Y., Laurent-Gengoux C., Zambon M., A cohomological framework for homotopy moment maps, J. Geom. Phys. 97 (2015), 119-132, arXiv:1409.3142.
  32. Gotay M.J., Isenberg J., Marsden J.E., Momentum maps and classical relativistic fields. Part II: Canonical analysis of field theories, arXiv:math-ph/0411032.
  33. Gotay M.J., Isenberg J., Marsden J.E., Montgomery R., Momentum maps and classical relativistic fields. Part I: Covariant field theory, arXiv:physics/9801019.
  34. Guillemin V., Sternberg S., Symplectic techniques in physics, 2nd ed., Cambridge University Press, Cambridge, 1990.
  35. Hélein F., Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory, in Noncompact Problems at the Intersection of Geometry, Analysis, and Topology, Contemp. Math., Vol. 350, American Mathematical Society, Providence, RI, 2004, 127-147, arXiv:math-ph/0212036.
  36. Hélein F., Multisymplectic formalism and the covariant phase space, in Variational Problems in Differential Geometry, London Math. Soc. Lecture Note Ser., Vol. 394, Cambridge University Press, Cambridge, 2012, 94-126, arXiv:1106.2086.
  37. Herman J., Existence and uniqueness of weak homotopy moment maps, J. Geom. Phys. 131 (2018), 52-65, arXiv:1711.02572.
  38. Kijowski J., A finite-dimensional canonical formalism in the classical field theory, Comm. Math. Phys. 30 (1973), 99-128.
  39. Krepski D., Vaughan J., Multiplicative vector fields on bundle gerbes, Differential Geom. Appl. 84 (2022), 101931, 31 pages, arXiv:2003.12874.
  40. Lada T., Markl M., Strongly homotopy Lie algebras, Comm. Algebra 23 (1995), 2147-2161, arXiv:hep-th/9406095.
  41. Lazarev A., Models for classifying spaces and derived deformation theory, Proc. Lond. Math. Soc. 109 (2014), 40-64, arXiv:1209.3866.
  42. Lee J.M., Introduction to smooth manifolds, 2nd ed., Grad. Texts in Math., Vol. 218, Springer, New York, 2013.
  43. Loday J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. 39 (1993), 269-293.
  44. Marrero J.C., Román-Roy N., Salgado M., Vilariño S., Reduction of polysymplectic manifolds, J. Phys. A 48 (2015), 055206, 43 pages, arXiv:1306.0337.
  45. Marsden J., Weinstein A., Reduction of symplectic manifolds with symmetry, Rep. Math. Phys. 5 (1974), 121-130.
  46. Marsden J.E., Misiolek G., Ortega J.P., Perlmutter M., Ratiu T.S., Cotangent bundle reduction, in Hamiltonian Reduction by Stages, Lecture Notes in Math., Vol. 1913, Springer, Berlin, 2007, 43-99.
  47. Marsden J.E., Ratiu T., Reduction of Poisson manifolds, Lett. Math. Phys. 11 (1986), 161-169.
  48. Marsden J.E., Weinstein A., Comments on the history, theory, and applications of symplectic reduction, in Quantization of Singular Symplectic Quotients, Progr. Math., Vol. 198, Birkhäuser, Basel, 1-19.
  49. Meyer K.R., Symmetries and integrals in mechanics, in Dynamical Systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, 259-272.
  50. Miti A., Ryvkin L., Multisymplectic observable reduction from the viewpoint of constraint triples, in preparation.
  51. Ortega J.-P., Ratiu T.S., Momentum maps and Hamiltonian reduction, Progr. Math., Vol. 222, Birkhäuser, Boston, MA, 2004.
  52. Ortega J.-P., Ratiu T.S, Cotangent bundle reduction, in Encyclopedia of Mathematical Physics, Academic Press, Oxford, 2006, 658-667, arXiv:math.SG/0508636.
  53. Rogers C.L., Higher symplectic geometry, Ph.D. Thesis, University of California, 2011, arXiv:1106.4068.
  54. Rogers C.L., $L_\infty$-algebras from multisymplectic geometry, Lett. Math. Phys. 100 (2012), 29-50, arXiv:1005.2230.
  55. Ryvkin L., Wurzbacher T., An invitation to multisymplectic geometry, J. Geom. Phys. 142 (2019), 9-36, arXiv:1804.02553.
  56. Ryvkin L., Wurzbacher T., Zambon M., Conserved quantities on multisymplectic manifolds, J. Aust. Math. Soc. 108 (2020), 120-144, arXiv:1610.05592.
  57. Schreiber U., Higher prequantum geometry, in New Spaces in Physics. Formal and Conceptual Reflections, Cambridge University Press, Cambridge, 2021, 202-278, arXiv:1601.05956.
  58. Sevestre G., Wurzbacher T., On the prequantisation map for 2-plectic manifolds, Math. Phys. Anal. Geom. 24 (2021), 20, 31 pages, arXiv:2008.05184.
  59. Shabazi C.S., Zambon M., Products of multisymplectic manifolds and homotopy moment maps, J. Lie Theory 26 (2016), 1037-1067, arXiv:1504.08194.
  60. Sikorski R., Differential modules, Colloq. Math. 24 (1971), 45-79.
  61. Sikorski R., Wstep do geometrii ró.zniczkowej, Bibl. Mat., Vol. 42, Państwowe Wydawnictwo Naukowe, Warsaw, 1972.
  62. Sjamaar R., Lerman E., Stratified symplectic spaces and reduction, Ann. of Math. 134 (1991), 375-422.
  63. Śniatycki J., Constraints and quantization, in Nonlinear Partial Differential Operators and Quantization Procedures (Clausthal, 1981), Lecture Notes in Math., Vol. 1037, Springer, Berlin, 1983, 301-334.
  64. Śniatycki J., Multisymplectic reduction for proper actions, Canad. J. Math. 56 (2004), 638-654.
  65. Śniatycki J., Poisson algebras in reduction of symmetries, Rep. Math. Phys. 56 (2005), 53-76.
  66. Śniatycki J., Weinstein A., Reduction and quantization for singular momentum mappings, Lett. Math. Phys. 7 (1983), 155-161.
  67. Stacey A., Comparative smootheology, Theory Appl. Categ. 25 (2011), 64-117, arXiv:0802.2225.
  68. Stasheff J., Homological (ghost) approach to constrained Hamiltonian systems, in Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991), Contemp. Math., Vol. 132, American Mathematical Society, Providence, RI, 1992, 595-609, arXiv:hep-th/9112002.
  69. Stiénon M., Xu P., Reduction of generalized complex structures, J. Geom. Phys. 58 (2008), 105-121, arXiv:math.DG/0509393.
  70. Sussmann H.J., Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188.
  71. Tu L.W., Differential geometry. Connections, curvature, and characteristic classes, Grad. Texts in Math., Vol. 275, Springer, Cham, 2017.
  72. Vaisman I., Reduction and submanifolds of generalized complex manifolds, Differential Geom. Appl. 25 (2007), 147-166, arXiv:math.DG/0511013.
  73. Whitney H., Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89.
  74. Willett C., Contact reduction, Trans. Amer. Math. Soc. 354 (2002), 4245-4260, arXiv:math.SG/0104080.

Previous article  Next article  Contents of Volume 20 (2024)