Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 062, 51 pages      arXiv:2309.14695      https://doi.org/10.3842/SIGMA.2024.062
Contribution to the Special Issue on Evolution Equations, Exactly Solvable Models and Random Matrices in honor of Alexander Its' 70th birthday

Strong Szegő Limit Theorems for Multi-Bordered, Framed, and Multi-Framed Toeplitz Determinants

Roozbeh Gharakhloo
Mathematics Department, University of California, Santa Cruz, CA 95064, USA

Received September 27, 2023, in final form June 20, 2024; Published online July 11, 2024

Abstract
This work provides the general framework for obtaining strong Szegő limit theorems for multi-bordered, semi-framed, framed, and multi-framed Toeplitz determinants, extending the results of Basor et al. (2022) beyond the (single) bordered Toeplitz case. For the two-bordered and also the semi-framed Toeplitz determinants, we compute the strong Szegő limit theorems associated with certain classes of symbols, and for the $k$-bordered (${k \geq 3}$), framed, and multi-framed Toeplitz determinants we demonstrate the recursive fashion offered by the Dodgson condensation identities via which strong Szegő limit theorems can be obtained. One instance of appearance of semi-framed Toeplitz determinants is in calculations related to the entanglement entropy for disjoint subsystems in the XX spin chain (Brightmore et al. (2020) and Jin-Korepin (2011)). In addition, in the recent work Gharakhloo and Liechty (2024) and in an unpublished work of Professor Nicholas Witte, such determinants have found relevance respectively in the study of ensembles of nonintersecting paths and in the study of off-diagonal correlations of the anisotropic square-lattice Ising model. Besides the intrinsic mathematical interest in these structured determinants, the aforementioned applications have further motivated the study of the present work.

Key words: strong Szegő theorem; bordered Toeplitz determinants; framed Toeplitz determinants; Riemann-Hilbert problem; asymptotic analysis.

pdf (789 kb)   tex (52 kb)  

References

  1. Abeles F.F., Dodgson condensation: the historical and mathematical development of an experimental method, Linear Algebra Appl. 429 (2008), 429-438.
  2. Au-Yang H., Perk J.H.H., Critical correlations in a $Z$-invariant inhomogeneous Ising model, Phys. A 144 (1987), 44-104.
  3. Baik J., Deift P., Johansson K., On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc. 12 (1999), 1119-1178, arXiv:math/9810105.
  4. Baik J., Rains E.M., Algebraic aspects of increasing subsequences, Duke Math. J. 109 (2001), 1-65, arXiv:math/9905083.
  5. Basor E., Ehrhardt T., Determinant computations for some classes of Toeplitz-Hankel matrices, Oper. Matrices 3 (2009), 167-186, arXiv:0804.3073.
  6. Basor E., Ehrhardt T., Asymptotic formulas for determinants of a special class of Toeplitz + Hankel matrices, in Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics, Oper. Theory Adv. Appl., Vol. 259, Birkhäuser, Cham, 2017, 125-154, arXiv:1603.00506.
  7. Basor E., Ehrhardt T., Gharakhloo R., Its A., Li Y., Asymptotics of bordered Toeplitz determinants and next-to-diagonal Ising correlations, J. Stat. Phys. 187 (2022), 8, 49 pages, arXiv:2011.14561.
  8. Bleher P., Gharakhloo R., McLaughlin K.T.-R., Phase diagram and topological expansion in the complex quartic random matrix model, Comm. Pure Appl. Math. 77 (2024), 1405-1485, arXiv:2112.09412.
  9. Böttcher A., Silbermann B., Introduction to large truncated Toeplitz matrices, Universitext, Springer, New York, 1999.
  10. Böttcher A., Silbermann B., Analysis of Toeplitz operators, 2nd ed., Springer Monogr. Math., Springer, Berlin, 2006.
  11. Bressoud D.M., Proofs and confirmations. The story of the alternating sign matrix conjecture, MAA Spectrum, Cambridge University Press, Cambridge, 1999.
  12. Brightmore L., Gehér G.P., Its A.R., Korepin V.E., Mezzadri F., Mo M.Y., Virtanen J.A., Entanglement entropy of two disjoint intervals separated by one spin in a chain of free fermion, J. Phys. A 53 (2020), 345303, 31 pages, arXiv:1912.08658.
  13. Charlier C., Asymptotics of Hankel determinants with a one-cut regular potential and Fisher-Hartwig singularities, Int. Math. Res. Not. IMRN 2019 (2019), 7515-7576, arXiv:1706.03579.
  14. Charlier C., Gharakhloo R., Asymptotics of Hankel determinants with a Laguerre-type or Jacobi-type potential and Fisher-Hartwig singularities, Adv. Math. 383 (2021), 107672, 69 pages, arXiv:1902.08162.
  15. Chelkak D., Hongler C., Mahfouf R., Magnetization in the zig-zag layered Ising model and orthogonal polynomials, Ann. Inst. Fourier (Grenoble) (2020), 1-56, arXiv:1904.09168.
  16. Claeys T., Its A., Krasovsky I., Emergence of a singularity for Toeplitz determinants and Painlevé V, Duke Math. J. 160 (2011), 207-262, arXiv:1004.3696.
  17. Claeys T., Krasovsky I., Toeplitz determinants with merging singularities, Duke Math. J. 164 (2015), 2897-2987, arXiv:1403.3639.
  18. Deift P., Integrable operators, in Differential Operators and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2, Vol. 189, Amer. Math. Soc., Providence, RI, 1999, 69-84.
  19. Deift P., Its A., Krasovsky I., Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities, Ann. of Math. (2) 174 (2011), 1243-1299, arXiv:0905.0443.
  20. Deift P., Its A., Krasovsky I., Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results, Comm. Pure Appl. Math. 66 (2013), 1360-1438, arXiv:1207.4990.
  21. Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52 (1999), 1335-1425.
  22. Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X., Strong asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math. 52 (1999), 1491-1552.
  23. Deift P., Zhou X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. (2) 137 (1993), 295-368.
  24. Fahs B., Uniform asymptotics of Toeplitz determinants with Fisher-Hartwig singularities, Comm. Math. Phys. 383 (2021), 685-730, arXiv:1909.07362.
  25. Fulmek M., Kleber M., Bijective proofs for Schur function identities which imply Dodgson's condensation formula and Plücker relations, Electron. J. Combin. 8 (2001), 16, 22 pages, arXiv:math/0004113.
  26. Gakhov F.D., Boundary value problems, Int. Ser. Monogr. Pure Appl. Math., Vol. 85, Pergamon Press, Oxford, 1966.
  27. Gharakhloo R., Its A., A Riemann-Hilbert approach to asymptotic analysis of Toeplitz+Hankel determinants, SIGMA 16 (2020), 100, 47 pages, arXiv:1909.00963.
  28. Gharakhloo R., Its A., A Riemann-Hilbert approach to asymptotic analysis of Toeplitz+Hankel determinants II, in preparation.
  29. Gharakhloo R., Liechty K., Bordered and framed toeplitz and hankel determinants with applications to integrable probability, arXiv:2401.01971.
  30. Gharakhloo R., Witte N.S., Modulated bi-orthogonal polynomials on the unit circle: the $2j-k$ and $j-2k$ systems, Constr. Approx. 58 (2023), 1-74, arXiv:2106.15079.
  31. Its A., Krasovsky I., Hankel determinant and orthogonal polynomials for the Gaussian weight with a jump, in Integrable Systems and Random Matrices, Contemp. Math., Vol. 458, American Mathematical Society, Providence, RI, 2008, 215-247, arXiv:0706.3192.
  32. Jin B.Q., Korepin V.E., Entanglement entropy for disjoint subsystems in XX spin chain, arXiv:1104.1004.
  33. Kozlowska K., Virtanen J.A., Transition asymptotics of Toeplitz determinants and emergence of Fisher-Hartwig representations, Nonlinearity 32 (2019), 3593-3645.
  34. Krasovsky I., Correlations of the characteristic polynomials in the Gaussian unitary ensemble or a singular Hankel determinant, Duke Math. J. 139 (2007), 581-619, arXiv:math-ph/0411016.
  35. Krasovsky I., Aspects of Toeplitz determinants, in Random Walks, Boundaries and Spectra, Progr. Probab., Vol. 64, Birkhäuser, Basel, 2011, 305-324, arXiv:1007.1128.
  36. McCoy B.M., Wu T.T., The two-dimensional Ising model, Harvard University Press, Cambridge, MA, 1973.
  37. Szegő G., On certain Hermitian forms associated with the Fourier series of a positive function, Comm. Sém. Math. Univ. Lund 1952 (1952), 228-238.
  38. Szegő G., Orthogonal polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., Vol. 13, American Mathematical Society, Providence, RI, 1975.
  39. Widom H., Asymptotic behavior of block Toeplitz matrices and determinants, Adv. Math. 13 (1974), 284-322.
  40. Witte N., Off-diagonal correlations of the anisotropic square-lattice ising model, in preparation.

Previous article  Next article  Contents of Volume 20 (2024)