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Abstract. Let 7: (M,w) — B be a non-singular Lagrangian torus fibration on a complete
base B with prequantum line bundle (L, v ) — (M,w). Compactness on M is not assumed.
For a positive integer N and a compatible almost complex structure J on (M, w) invariant
along the fiber of 7, let D be the associated Spin® Dirac operator with coefficients in L&V,
First, in the case where J is integrable, under certain technical condition on J, we give a com-
plete orthogonal system {0} }yepye Of the space of holomorphic L2-sections of L&V indexed
by the Bohr—Sommerfeld points Bgg such that each 1, converges to a delta-function sec-
tion supported on the corresponding Bohr-Sommerfeld fiber 771 (b) by the adiabatic(-type)
limit. We also explain the relation of 9, with Jacobi’s theta functions when (M, w) is 72",
Second, in the case where J is not integrable, we give an orthogonal family {191,} beBp of
L2—sectigns of L®N indexed by Bgg which has the same property as above, and show that
each D¥J;, converges to 0 by the adiabatic(-type) limit with respect to the L?-norm.
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1 Introduction

The purpose of this paper is to investigate the relationship between Spin® quantization and real
quantization from the viewpoint of the adiabatic(-type) limit for Lagrangian torus fibrations on
complete bases. In this paper, a Lagrangian torus fibration is assumed to be non-singular, but
its total space is not assumed to be compact unless otherwise stated.

1.1 Background and motivation

First let us explain the motivation which comes from geometric quantization. For geometric
quantization, see [19, 24, 37, 43]. In physics, quantization is the procedure for building quantum
mechanics starting from classical mechanics. In the mathematical context, it is often thought
of as a representation of the Poisson algebra consisting of certain functions on a symplectic
manifold to some Hilbert space, so called the quantum Hilbert space. When a symplectic
manifold (M,w) and a prequantum line bundle (L, VL) — (M,w) are given, geometric quan-
tization provides us with a method to construct the quantum Hilbert space and the represen-
tation from these data geometrically. In the theory of geometric quantization by Kostant and
Souriau [27, 38, 39], we need an additional structure which is called a polarization to obtain the
quantum Hilbert space. By definition, a polarization is an integrable Lagrangian distribution P
of the complexified tangent bundle TM ® C of (M,w). When a polarization P is given, the
quantum Hilbert space is naively given as the space of L?-sections of (L, VL) covariant constant
along P.
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A common example is the Kéhler polarization. When (M, w) is Kahler (i.e., (M,w) has a com-
patible complex structure) and (L, v ) is a holomorphic line bundle with canonical connection,
we can take T9'M as a polarization, and the obtained quantum Hilbert space is nothing but
the space of holomorphic L2-sections. This polarization is called the Kéhler polarization and
the quantization procedure is called the Kahler quantization. Note that when M is compact and
the Kodaira vanishing theorem holds, the quantum Hilbert space is H%(M,Op). In particular,
its dimension is equal to the index of the Dolbeault operator with coefficients in L.

Another example is a real polarization. Suppose (M,w) admits a structure of a Lagrangian
torus fibration m: (M,w) — B. For each point b € B of the base manifold B, the restriction
(L, VE)|z=1) of (L, V) to the fiber 7~1(b) is a flat line bundle. Let HO (7~ (b); (L, VF)|z-1(3))
be the space of covariant constant sections of (L, VL) |=—1(3)- Then, a point b € B is said to be
Bohr-Sommerfeld if H° (7~ 1(b); (L, V*)|z-1()) # {0}. It is well known that Bohr-Sommerfeld
points appear discretely. We denote by Bps the set of Bohr—-Sommerfeld points. In this case,
we can take T, M ® C, the complexified tangent bundle along the fiber of 7 as a polarization,
and if M is compact, the quantum Hilbert space is given by ®pecpy H® (W_l(b); (L, VL) ]7r71(b)).
See [37] for more details. In this paper, we call this quantization the real quantization.

When (M,w) has a structure of a Lagrangian torus fibration 7: (M,w) — B as well as
a Kahler structure, it is natural to ask whether Kéhler and real quantizations give the same
results. This paper focuses on the quantum Hilbert spaces obtained by both quantizations. It
is easy to see that for any compatible almost complex structure J of (M,w), (TM,J) admits
a flat connection as a complex vector bundle. So, if (M,w,J) is closed Kahler, by [29, Ex-
emples 12.5.2 (ii)], as a manifold, M is finitely covered by a torus. A typical example of this
case is an abelian variety, whose geometric quantization is well understood in the context of the
theory of theta functions. For example, see [4]. Moreover, even in the non-compact case, with
an appropriate choice of the quantum Hilbert space for the real quantization, the relationship
between these quantizations has been investigated. For the cotangent bundle of the Lie group
of compact type, these are related by the generalized Segal-Bargmann transform [18].

A completely integrable system can be thought of as a Lagrangian fibration with singular
fibers. As one of such examples, for the moment map of a smooth projective toric variety, Danilov
showed in [9] that H°(M, Op) has the irreducible decomposition H°(M, Op) = @meAm% Cyp as
a compact torus representation, where A is the moment polytope, t; is the weight lattice, and C,,,
is the irreducible representation of the torus with weight m. In this case, since singular fibers
of the moment map are isotropic tori, the Bohr—Sommerfeld condition is still meaningful for
singular fibers, and A Nt} is identified with the set of Bohr-Sommerfeld points. This implies
the dimensions of the quantum Hilbert spaces obtained by the above two kinds of quantizations
agree with each other. It has been shown that similar results hold for the Gelfand—Cetlin system
on the flag variety [17], the Goldman system on the moduli space of flat SU(2) connections on
a surface [22], and the Kapovich-Millson system on the polygon space [23].

Moreover, for smooth projective toric varieties, in their paper [3], Baier—Florentino-Mourao—
Nunes developed a geometric approach to understand the relationship between Kéahler and real
quantizations. Namely, they gave a one-parameter family of complex structures {Jt}te[o,oo) and
a basis {s}" } e ANg, of the space of holomorphic sections associated with the complex structure J;
for each ¢ such that each section sy converges to a delta function section supported on the
corresponding Bohr—Sommerfeld fiber as ¢ goes to co. The similar results have been obtained
for flag manifolds [21] and smooth irreducible complex algebraic varieties [20]. But in [21]
and [20] the convergence was showed only for the non-singular Bohr-Sommerfeld fibers whereas
in [3] it was showed for all Bohr-Sommerfeld fibers.

The Kéahler quantization can be generalized to a non-integrable compatible almost complex
structure on a closed (M,w). When a compatible almost complex structure J on (M, w) is given,
we can consider the associated Spin® Dirac operator D acting on F(/\‘T *MO ® L). It is well
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known that D is a formally self-adjoint, first order, elliptic differential operator of degree-one,
and if J is integrable, D agrees with the Dolbeault operator up to constant. If J is not integrable,
T%1 M is no more polarization. But, even in this case, since D is Fredholm, we can still take
the element of the K-theory of a point

ker(D‘/\evenT*M()J@L) - ker(D’/\oddT*M()J@L) € K(pt)

as a (virtual) quantum Hilbert space. Its virtual dimension is equal to the index of D. We call
this quantization the Spin® quantization. It has been showed in [1, 14, 28] that the equality
between dimensions of two quantum Hilbert spaces still holds by replacing Kéhler quantization
with Spin® quantization in terms of the index theory.

1.2 Main theorems

In this paper, we apply the approach taken in [3] to both of Kéhler and Spin® quantizations
of Lagrangian torus fibrations. Our setting is as follows. Let 7: (M,w) — B be a Lagrangian
torus fibration on a complete base B with prequantum line bundle (L, VL) — (M,w). We do
not assume M is compact. Let J be a compatible almost complex structure of (M,w) invariant
along the fiber of 7 in the sense of Lemma 3.6. For J, in Section 4.3, we give a one-parameter
family {J'} 1~ Of compatible almost complex structures of (M, w) with J 1 = J so that the fiber
shrinks as t goes to co with respect to the associated Riemannian metrics. We also show that J
is integrable if and only if every J? is integrable. For ¢ > 0 and a positive integer N, let D! be
the Spin® Dirac operator with coefficients in L®V associated with J*.

Firstly, let us consider the case where J is integrable. In this case, we show the following
Theorem, which is obtained by putting Corollary 4.5 and Theorem 4.14 together.

Theorem 1.1. Under the above setting, assume that J is integrable and satisfies certain tech-
nical condition. Then, for each t > 0, there exists a complete orthogonal system {ﬂi}beBBs
of holomorphic L?-sections of L®N — (M, Nw, Jt) indexed by the Bohr-Sommerfeld points Bpg
such that each V% converges as a delta-function section supported on 7w 1(b) as t — oo in the
following sense, for any L*-section s of L®N, we have

9t n(n-1) W™
lim s,b> (1) / (5,6) g |y,
t—00 M< 193111 / pon n! ) Len

where <,]2]L®N is the Hermitian metric of L®N, & is the covariant constant section of
(L,VL)® lr—1() defined by (4.6), and |dy| is the natural one-density on w~(b).

We give {9} }, e By, CXPlicitly in Section 4.

One of examples of the total space of a Lagrangian torus fibration with complete base is the
abelian variety. In this case, we show that, under an appropriate choice of J, each 1 coincides
with Jacobi’s theta function up to function on the base space (see Theorem 4.9). For the theta
functions, see [32, 33].

We remark that there are several works which deal with theta functions from the viewpoint of
geometric quantization of Lagrangian fibrations, for example, [4, 33, 34, 35]. In [7], Borthwick—
Uribe have introduced another approach to generalize the Kéhler quantization to non-integrable
almost complex structures by using the metric Laplacian of the connection on the prequantum
line bundle instead of Spin® Dirac operator. Their approach is called the almost Kéhler quan-
tization. In the almost Kéhler quantization of the Kodaira—Thurston manifold, Kirwin—Uribe
and Egorov separately constructed an analog of the theta function as an element of the quantum
Hilbert space [13, 25]. In [12], Egorov also showed the similar result for Lagrangian T2-fibrations
on T? with zero Euler class.

Secondly, let us consider the case where J is not integrable. Even in this case, we obtain the
following theorem which is a combination of Theorems 5.2 and 5.3.
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Theorem 1.2. Under the above setting, for each t > 0, there exists an orthogonal fam-
ily {ﬂi}beBBS of L?-sections on LN indexed by Brg such that

(1) each {9% converges as a delta-function section supported on 7—1(b) as t — oo in the above

sense, and
(2) lim [ D], = 0.

We also give {5@} be B explicitly in Section 5.

When M is compact, the index of the Spin® Dirac operator D := D' can be considered and it
coincides with the number of Bohr-Sommerfeld points. See [14]. Moreover, by the Spin® Dirac
vanishing theorem due to Borthwick-Uribe [7], ker(D|oda7+ 0,110~ ) vanishes for a sufficiently
large N. So, (1.2) in Theorem 1.2 suggests that we can interpret the Hilbert space generated
by {792} beBgg &S a1l approximation to the quantum Hilbert space in the Spin® quantization for
a sufficiently large V.

In Kostant—Souriau’s formulation of geometric quantization, there is a systematic method
to associate an operator on the space of L2-sections of L&V, called the prequantum operator,
with a smooth function on (M,w). When (M,w) is not compact, this induces a nontrivial
representation of the Poisson algebra consisting of certain functions to the quantum Hilbert
space. One of the advantages of our setting is that it enable us to deal with this representation
of the Poisson algebra concretely by using the complete orthogonal system of the quantum
Hilbert space given in this paper, which we will discuss somewhere.

The idea used in this paper is quite simple, and consists of two key facts. The one is
about the symmetry by the fundamental group and the other is about the integrability of al-
most complex structures. Namely, the first key fact is Corollary 2.25 which claims that any
Lagrangian torus fibration 7: (M,w) — B with complete base B and a prequantum line bun-
dle (L,V*) — (M,w) can be obtained as the quotient of a m(B)-action on the standard La-
grangian fibration (My,wp) := (R™ x T™,> " | da; A dy;) — R™ with standard prequantum line
bundle (Lo, VLO) = (R” X T" x C,d—2my/-131" 4 :Uidyi), where (z1,...,2,) and (y1,...,Yn)
are the coordinates of R™ and 1", respectively. In particular, any compatible almost complex
structure J on (M,w) is induced from a 71(B)-equivariant one on (Mj,wp). Since the set of
compatible almost complex structures on (M, wy) corresponds one-to-one to the set of smooth
maps from My to the Siegel upper half space, it enables us to describe the Spin® Dirac operator
associated with J in terms of the corresponding map. We show that there exists a 71 (B)-
invariant compatible almost complex structure whose corresponding map is invariant along the
fiber (see Lemma 3.6). For the Spin® Dirac operator D associated with such an almost complex
structure J, we consider the problem on existence of nontrivial sections of LS@N contained in
the kernel of D. By taking the Fourier series expansion of a section s of L?N with respect to
the fiber coordinates, the equation Ds = 0 can be reduced to a system of partial differential
equations on R".

The other key fact is Proposition 3.14 which gives a necessary and sufficient condition in order
that the system of partial differential equations has nontrivial solutions and also shows that it
is equal to the integrability condition for J, i.e., (My,wo,J) is Kéhler. Moreover, in this case,
we give a family of 7 (B)-equivariant solutions of Ds = 0 indexed by the Bohr—Sommerfeld
points, each of which is expressed by the formal Fourier series. If they converge absolutely
and uniformly on any compact set and form square integrable sections, this gives a complete
orthogonal system of the space of holomorphic L?-sections of (L, VL)®N — (M,Nw, J). We
also give a sufficient condition for their convergence and square integrability. Even if J is not
integrable, by considering an approximation of D, we can obtain an orthogonal family of L?-
sections of L&Y indexed by the Bohr-Sommerfeld points Bgs.

The limit used in this paper is slightly different from the adiabatic limit in Riemannian
geometry. When a fiber bundle 7: M — B and a Riemannian metric g on M are given, we can
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consider the decomposition (7'M, g) = (V,gv) ® (H, gu), where V is the tangent bundle along
the fiber with fiber metric gy := g|y and H is the orthogonal complement of V' with respect
to g with fiber metric gy := g|g. For each t > 0, we deform g by g' := gy @ tgy. Then,
in Riemannian geometry, the adiabatic limit is the procedure for taking the limit of geometric
objects associated with g* as t — oo. But, since such a deformation of Riemannian metrics
does not fit into our symplectic context, we modify the deformation. Namely, in this paper, we
use a one-parameter family {Jt} >0 of compatible almost complex structures on (M,w) such
that the corresponding one-parameter family of Riemannian metrics is {g th &) tgH} 507
and investigate the behavior of ¥} (resp vt ) as t goes to oo.

The paper is organized as follows. In Section 2, we first briefly review some well-known facts
about integral affine geometry and Lagrangian fibrations. Then, by using these, we prove Corol-
lary 2.25. In Section 3, we discuss the m(B)-equivariant Spin® quantization of (Mp,wp) — R"
with standard prequantum line bundle (L(], VLO) and give a statement of Proposition 3.14. In
Section 4, we prove Theorem 1.1 step by step, and explain the relation between 192 and Jacobi’s
classical theta function. Finally, in Section 5, we prove Theorem 1.2. The requirements for
Fourier series are explained in Appendix A. A proof of Proposition 3.14 is given in Appendix B
because it is done by a very long direct computation.

1.3 Notations

For ¢ = Y(x1,...,2,) and y = Y(y1,...,yn) € R™, let us denote the standard inner prod-
uct > 4 z;y; by x -y. We use the notation 9, for 82/_. We also use the following notations:

" = (R/Z)", (Mo, wp) = (R" x ", Zdﬂfi A dyi) ;

=1

(Lo, VE0) = (R” xT" x C,d — QWleindyi) ,

=1

where (21,...,2,) and (y1,...,yn) are the coordinates of R™ and T™, respectively. In this paper,
all manifolds and maps are supposed to be smooth unless otherwise stated. When we use the
term “group action”, we mean “left group action” unless otherwise specified.

2 Unfolding Lagrangian fibrations

2.1 Integral affine structures

Let B be a manifold.

Definition 2.1. An integral affine atlas of B is an atlas {(U,, o)} of B whose coordinate
transformation ¢, o qﬁgl on each non-empty overlap U,s := U, N Ug is an integral affine
transformation. Namely, on each non-empty overlap U,g := U, N Ug, there exist locally
constant maps Aa[g Uasp = GLn(Z) and cop: Uyp — R™ such that ¢, o ¢El is of the form
®o © qbﬂ (x) = Aap + cop. Two integral affine atlases {( a,d)a)} and {(Ug, ¢3)} of B are said
to be equivalent if on each non-empty overlap U, N Uﬁ, Po © (qbﬁ) is an integral affine transfor-
mation. An integral affine structure on B is an equivalence class of integral affine atlases of B.
A manifold equipped with integral affine structure is called an integral affine manifold.

Example 2.2. An n-dimensional Euclidean space R” is equipped with a natural integral affine
structure.

Let us give examples of integral affine manifolds obtained from integral affine actions on R".
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Example 2.3.

(1) Let v1,...,v, € R™ be a linear basis of R” and C = (v; -+ v,) € GL,(R) the matrix
whose ith column vector is v; for ¢ = 1,...,n. Z" acts on R" by p,(z) := 2+ C~ for v € Z"
and x € R™. Since the action preserves the natural integral affine structure on R", the
quotient space, which is topologically T", is equipped with an integral affine structure.

(2) Let A € N be a positive integer and a,b € R+ positive real numbers. Define the Z2-action
on R? as follows. First, for the standard basis e, ep of Z2, let us define the integral affine
transforms pe,, pe, by

pe.(2) =2 + (g) . Pey(@) = <(1) ?) z+ (2)

for z € R2. Since pe, and p., are commutative, they form the Z2-action on R? by

py () = plt o pl2(x)

for each v = (71, v2) € Z2. By the same manner as in (1), the quotient space is equipped
with an integral affine structure. It is shown in [31, Theorem A] that the quotient space
is topologically T2, but the induced integral affine structure is not isomorphic to that
obtained in (1) for n = 2 and there are only these two integral affine structures on 72 up
to isomorphism.

Example 2.4. For v = t(v1,72,73), ¥ = (71,7, 74) € Z3, define the product v o' € Z3 by

1 0 o\"
yoy :=[0 0 -1 v+ 7.
0 -1 0

Then, Z? with product o is a non abelian group (Z3, o). (Z?’, o) acts on R® by

1 0 o\"
py(z):=(0 0 —1| z+~.
0 -1 0

The action preserves the natural integral affine structure on R3. Therefore, the quotient
space R3/ (Z3, o) is equipped with the integral affine structure induced from that of R3.

Example 2.5. Let n > 2. For v = (v1,...,7), ¥ = '(7},..-,7,) € Z", define the prod-
uct yoy' € Z™ by

1
voy = N v+
(e
Then, Z™ with product o is a non abelian group (Z",0). (Z",0) acts on R"™ by

1
—1)n
py(z) = - T+ .

G

The action preserves the natural integral affine structure on R"™. Therefore, the quotient
space R"™/(Z", o) is equipped with the integral affine structure induced from that of R”. For n=2,
the quotient space is topologically a Klein bottle.
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Example 2.6. Let n > 2 and A1,...,\p—1 € Z. For v = (1, ..., %), ¥ ='(4},...,7,) € Z",
define the product v o/ € Z" by

1 )\1 Tn
1 A

yor = v + 7.

1 )\1 Tn

py(x) = x+7.
1 )\nfl
1

Then, the quotient space R™/(Z", o) is equipped with the integral affine structure induced from
that of R”. In the case where n = 2 and A\; > 0, it coincides with the one given in Example 2.3 (2)
with a =0 = 1.

Example 2.7. Let Z/4Z = {£(}9),£(97})} act on (R?)" \ {0} naturally. Then, the
quotient space is a non-compact manifold and equipped with the integral affine structure induced
from that of (R?)" \ {0}.

Let B be an n-dimensional connected integral affine manifold, p: B — B the universal
covering of B. It is clear that B is also equipped with the integral affine structure so that p is
an integral affine map. We set I := m1(B). I" acts on B from the right as a deck transformation.
For each v € I' we denote by o, the inverse of the deck transformation corresponding to =.
Then, o: v + o, defines a left action o € Hom(F ,Aut (B)) The following proposition is well
known in affine geometry. See [16, p. 641] for a proof.

Proposition 2.8. There exists an integral affine immersion dev: B — R"™ and a homomor-
phism p: I' — GL,(Z) x R™ such that the image of dev is an open set of R™ and dev is equivari-
ant with respect to o and p. Such an integral affine immersion is unique up to the composition
of an integral affine transformation on R™.

We will prove a version of this proposition (see Proposition 2.22) when B is equipped with
a Lagrangian fibration on it in Section 2.3.

Proposition 2.9. Let B, p: B — B, dev: B — R", and p: I' = GL,(Z) x R™ be as in
Proposition 2.8. Suppose that B is compact and the I'-action p on R™ is properly discontinuous.
Then, dev is surjective.

Proof. We denote the image of dev by O. By Proposition 2.8, O is an open set in R™. So, it is
sufficient to show that O is closed in R™. Since the I'-action p on R"™ is properly discontinuous,
the quotient space R"/I" becomes a Hausdorff space and the natural projection ¢: R” — R"/T" is
continuous. O is preserved by the I'-action p on R since dev is I'-equivariant. Then, dev induces
a continuous surjective map dev: B = E/F — O/T". Since B is compact, O/T" is a compact
subset in the Hausdorff space R"/T. In particular, it is also closed. Hence, O = ¢~ (O/T) is
also closed in R™. |
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Corollary 2.10. Let B, p: B — B, dev: B > R", and p: I' = GL,(Z) x R™ be as in Propo-
sition 2.8 and assume that B compact. If the image of p is included in (GL,(Z) N O(n)) x R™
and the subgroup p(I') of (GL,(Z) N O(n)) x R™ is discrete, then dev is surjective.

Proof. It follows from [42, Theorem 3.1.3]. n

Definition 2.11. The integral affine immersion dev is called a developing map. B is said to be
complete if dev is bijective. B is said to be incomplete if B is not complete.

Example 2.12. All of the above examples are complete other than Example 2.7 for n > 2.

Example 2.13. Let B be an n-dimensional compact integral affine manifold B with integral
affine atlas {(Uy, ¢o)} as in Definition 2.1. If on each non-empty overlap U,g, the Jacobi matrix
of ¢q 0 ¢El is contained in GL,(Z) N O(n), then B has a flat Riemannian metric. Hence, by
Bieberbach’s theorem [5, 6], B is finitely covered by 7. In particular, B is complete. For flat
Riemannian manifolds, see [42, Chapter 3.

2.2 Lagrangian fibrations

In this section, let us recall Lagrangian fibrations and explain how integral affine structures are
associated with Lagrangian fibrations. After that, let us recall their classification by Duister-
maat. For more details, see [10, 36, 44].

Let (M,w) be a symplectic manifold.

Definition 2.14. A map 7: (M,w) — B from (M,w) to a manifold B is called a Lagrangian
fibration if 7 is a fiber bundle whose fiber is a Lagrangian submanifold of (M, w).

Example 2.15. Let 7" = (R/Z)"™ be an n-dimensional torus. R"™ x T™ admits a standard
symplectic structure wo = >, dz; A dy;, where (z1,...,2,) and (y1,...,yn) are the coordinates
of R™ and T™, respectively. Then, the projection my: (R™ x T™,wp) — R™ to R™ is a Lagrangian
fibration.

The following theorem shows that Example 2.15 is the local model of Lagrangian fibrations.

Theorem 2.16. Let 7: (M,w) — B be a Lagrangian fibration with compact, path-connected
fibers. Then, for each b € B, there exists a chart (U,$) of B containing b and a symplectomor-
phism @: (771 (U), w|-1(1r)) = (6(U) x T, wp) such that the following diagram commutes:

(71 U), wlr—111)) o ($(U) x T",wy)

Lk

U

Proof. In [10, Section 2], Duistermaat showed that any Lagrangian fibration with compact,
path-connected fibers is locally identified with a regular part of a completely integrable Hamil-
tonian system. Theorem 2.16 follows from this fact together with Arnold-Liouville’s theorem
which claims that a regular part of a completely integrable Hamiltonian system is locally iden-
tified with mp: (R™ x T™, wp) — R™. For Arnold-Liouville’s theorem, see [2, 10, 36, 40]. [

In particular, Theorem 2.16 says that any Lagrangian fibration with compact, path-connected
fibers has a torus as its fiber.

In this paper, we consider only Lagrangian fibrations with compact, path-connected fibers. In
the rest of this paper, “Lagrangian fibration” refers to a Lagrangian fibration having compact,
path-connected fibers.

Now we investigate automorphisms of the local model. By the direct computation shows the
following lemma. See also [40, Lemma 2.5].
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Lemma 2.17. Let ¢: (R" x T wy) — (R™ x T, wp) be a fiber-preserving symplectomor-
phism of mp: (R™ x T" wgy) — R™ which covers a map ¢: R™ — R™. Then, there exist a ma-
triz A € GL,(Z), a constant ¢ € R™, and a map u: R™ — T™ with * AJu symmetric such that ¢
15 written as

o(z,y) = (A:E +e,t Ay + u(:c))
for any (xz,y) € R™ x T™, where Ju is the Jacobi matrixz of u.
By Theorem 2.16 and Lemma 2.17, we can obtain the following proposition.

Proposition 2.18. Let w: (M,w) — B be a Lagrangian fibration. Then, there exists an at-
las {(Uny da) }aca of B and for each o € A there exists a symplectomorphism

¢ar (171 Ua),wlerwy) = (6a(Ua) x T, wo)

such that the following diagram commutes:

(7 (Ua), wlr10)) > (¢a(Ua) x T™, wo)

lﬂ lm
Pa
Ua Pa(Ua)-
Moreover, on each non-empty overlap Uyp there exist locally constant maps Aqp: Uag — GL(Z),

cap: Uag — R™, and a map uag: Usg — T with tAagJ(uag o gb/gl) symmetric, such that the
overlap map is written as

Yo © 95" (2,y) = (Aap + cap, " Ay + tiag 0 95 (7)) (2.1)
for any (2,y) € $p(Uag) X T™.

Proposition 2.18 implies that the base manifold of a Lagrangian fibration has an integral
affine structure. Conversely, suppose that a manifold B admits an integral affine structure
and let {(Uq, ¢a)}taca be an integral affine atlas of B. Then, we can construct a Lagrangian
fibration on B in the following way. For each o € A, let ¢,: T*Bly, — ¢a(Us) x R™ be the
local trivialization of the cotangent bundle T*B induced from (U,, ¢,). On each nonempty
overlap U,g, suppose that ¢, o qs/;l is written by ¢4 o gZ)El(x) = A,3T + cqp as in Definition 2.1.
Then, the overlap map is written as

P00 (85) " (@.y) = (Aasz + cap, "AZ ). (2.2)

Since Ayp is in GL,(Z), (2.2) preserves the integer lattice Z" in each fiber R™. Hence, it
induces the fiber-preserving symplectomorphism from 7g: (¢g(Uag) X T, wo) — ¢3(Uasg) to
701 (Pa(Uag) X T, wo) = ¢a(Uap) which covers ¢, o (ﬁlgl. By patching {m: (¢a(Ua) x T, wp)
— ¢a(Uqa)}aca together by these symplectomorphisms, we obtain a new Lagrangian fibration
Tean: (Mean, Wean) — B, namely,

(Mcan,wcan) = H (Qba(Ua) X TnaWO)/N
acA

and

Wcan([xa7 ya]) = ¢;1($a)

for (za,Ya) € ¢a(Us) x T™. This construction does not depend on the choice of an equiv-
alent integral affine atlas and depends only on the integral affine structure on B. We call
Tean: (Mean, Wean) — B the canonical model. We summarize the above argument to the follow-
ing proposition.
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Proposition 2.19. Let B be a manifold. B is a base space of a Lagrangian fibration if and only
if B admits an integral affine structure.

Let us give a classification theorem of Lagrangian fibrations in the required form in this
paper. Let m: (M,w) — B be a Lagrangian fibration. Then, associated with 7: (M,w) — B,
B has an integral affine atlas {(Ua, ¢a) taca as in Proposition 2.18. Let 7ean: (Mcan, Wean) — B
be the canonical model associated with the integral affine structure on B. On each U,, let

Pa: (ﬂ-il(UOé)vw‘ﬂfl(Ua)) — (¢a(Ua) X T"Mo)

be a local trivialization of 7: (M,w) — B as in Proposition 2.18, and

ga: (Trc;%&Ua)?wcan) - (¢a(Ua) X Tn7w0>

be the local trivialization of Tean : (Mcan, Wean) — B naturally induced from (U, ¢ ) as explained
above.! Then their composition

ha =60 0 pa: (T (Ua)wle1(0) = (Team(Ua)s Wean)

gives a local identification between them. On each U, N Ug, suppose that ¢, o <pg1 is written as
n (2.1). Then, hy o hgl can be written as

haohz'(p) = ¢a  (Aapt + cap,"ALsy + tap(m(p))),
where 66(]9) = (2,y). uqp induces the local section g of Tean: (Mcan, Wean) — B on Uyg by

U (b) := [@a(b), uas(b)]

for b € Uyg. It is easy to see that u,g satisfies Ezﬁwcan = 0. A section with this condition is
said to be Lagrangian.

Let . be the sheaf of germs of Lagrangian section of 7ean : (Mcan, Wean) — B. - is the sheaf
of Abelian groups since the fiber of mean: (Mcan, Wean) — B has the structure of an Abelian group
by construction. By definition {u,s} forms a Cech one-cocycle on B with coefficients in .. The
cohomology class determined by {t,g} does not depend on the choice of a specific integral affine
atlas and depends only on 7: (M,w) — B. We denote the cohomology class by u € H(B;.7).
u is called the Chern class of m: (M,w) — B in [10].

Lagrangian fibrations on the same integral affine manifold are classified with the Chern
classes.

Theorem 2.20 ([10]). For two Lagrangian fibrations m: (M1,w1) — B and mo: (Ma,ws) — B
on the same integral affine manifold B, there exists a fiber-preserving symplectomorphism be-
tween them which covers the identity if and only if their Chern classes u1 and us agree with each
other. Moreover, if an integral affine manifold B and the cohomology class w € H'(B;.7) are
given, then there exists a Lagrangian fibration w: (M,w) — B that realizes them.

Remark 2.21. By the construction of u, there exists a fiber-preserving symplectomorphism
between 7: (M,w) — B and 7can: (Mcan, Wean) — B that covers the identity of B if and only
if w vanishes. In particular, if uw vanishes, 7: (M,w) — B possesses a Lagrangian section
since Tean: (Mcan,Wean) — B has the zero section which is Lagrangian. Conversely, it can be
shown that any Lagrangian fibration with Lagrangian section is identified with the canonical
model.

'Here we use the same notation as the local trivialization of T B because we have no confusion.
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2.3 Lagrangian fibrations with complete bases

Assume that 7: (M,w) — B is a Lagrangian fibration with n-dimensional connected base mani-
fold B, p: B » B the universal covering of B. We denote by 7: (M,Uu) — B the pullback
of m: (M,w) = B to B. Let I' be the fundamental group of B and o € Hom(I', Aut(B))
the action of T" defined as the inverse of the deck transformation as in Proposition 2.8. By
definition, M admits a natural lift of o which preserves . The I'-action on (M ,&7) is denoted
by . By Proposition 2.8, we have a developing map dev: B — R" and the homomorphism
p: ' = GL,(Z) x R". We denote the image of dev by O. Note that the I'-action p on R"
preserves O since dev is I'-equivariant.

Proposition 2.22. There exists a Lagrangian fibration ©': (M',w') — O, a fiber-preserving
symplectic immersion dev: L]\j w) (M',w") which covers dev, and a lift p of the I'-action p
on O to (M',w') such that dev is T'-equivariant with respect to o and p.

Proof. By Proposition 2.19, B admits an integral affine structure determined by , and it
also 1nduces the integral affine structure on B. Let {(Ua, ¢5)} be the integral affine atlas of B
and {( Ua)s Wla-1(U4)5 goa)} the local trivializations of 7: (M w) — B as in Proposition 2.18
so that on each non-empty overlap Uag, there exist locally constant maps Aaﬁz Uap — GL,(Z)
and c’aﬁ: Usp — R™, and a map u/ ot Uap =TT with 2EAO(/gJ( ((]5 )~ ) symmetric such
that ¢g o (¥5)~ L is written as in (2.1). Then, A,g’s form a Cech one cocycle {Ans} € CH{UL};
GL,,(Z)) and defines a cohomology class [{Aas}] € H! (B GL,(Z)). Tt is well known, for ex-
ample, see [30, Appendix A], that H 1 (B GL,( Z) is identified with the moduli space of homo-
morphisms from 7T1( ) to GL,(Z). Since m (B) is trivial, there exists a Cech zero-cocycle
{A,} € C°({U,}; GL,,(Z)) such that A,s = A, A5 on each U,g. By using the cocycle we mod-
ify the local trivializations {(7(Ua), wlz—1(1,).¥) } and the integral affine atlas {(Ua,¢/)}
by replacing ¢!, ¢ by

Pa(D) = (A3 < "Aa) 060 (P), = AL'd0

for each a € A, respectively. Then, on each U,g, ¢, o (cp,’g)_l

i1s written as

9021 © (@lﬁ)_l(%a y) = (-%‘F Capy Y + UaB O (¢,/6’)_1(5))7

where we set cag 1= A lc aﬂ and uqg = Aaua5 Then, Cap’s ’s form a Cech one-cocycle {cap} €
C'({Us}; R™) and defines a cohomology class [{cqp}] € H* (B R™). By the universal coefficients
theorem, H* (B R”) is identified with Hom(H1 (B Z) R”), which is trivial. So there exists
a Cech zero-cocycle {ca} € CO({Uy}; R") such that cag = co — cg on each U,g. By using the
cocycle, we again modify {(7~!(Ua),wlz-1(17,), ¥%) } and {(Ua, ¢/,)} by replacing ¢/,, ¢/, by

2a(B) = @al®) = (car0),  $a(b) = 64(b) ~ ca

respectively for each av € A. Then, on each U,g, ¢, coincides with ¢z and ¢, © ngl is written as
a0 95 (T,y) = (Z,y + uap 0 ¢35 (T)).

Now we define the map dev: B > R® by
dev (b) = ¢a (b)

if b is in U,. It is well defined, and by construction, it is an integral affine immersion whose
image is UpecAPa(Ua). (M',w’) is defined by

(M’,w) H(‘ba( ) xT" WO)/

acA
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where (Za,Ya) € pa(Us) X T™ and (23,yp) € (f)g(Ug) x T™ are in the relation (zq,ya) ~ (23,Yp)
if they satisfy (za,¥%a) = @a © @51(335 yg), and 7': (M',w') — O is defined to be the first
projection. dev: (M,Q) — (M',w') is defined by

dev(p) = [a(P)]

if pisin 7 1(Uy).

Without loss of generality, we can assume that each U, is connected,and for each v € T’
and a € A there uniquely exists o/ € A such that the deck transformation 0., maps U, onto Uy,
Then, its lift o, to (M @) maps 7 *(Ua) to 7 (Uy). By Lemma 2.17, ¢po 0 0 0 ¢ can be
written as

— ~ !~ /
Gor 00y 0 0 (T) = AT T+ 57

for some Aa *e GL (Z2), ¢ O‘ @ € R". Since ¢, coincides with ¢g on each overlap U,g, ¢or © ¢ 0
0a(T) = AO‘ o + ca @ also agrees with ¢g o ¢ 0 Pg(T) = Aﬁ iz + CB # on the overlap ¢q( Uap) =
¢8(Uap)- Thls 1mphes AO‘ *’s and co‘lo"s do not depend on « and depends only on . In fact, for
each v € I" and ag € A, we set

a/ao / a’ag /
J— 0 — o 0 _ o
Ao = {OZEA|A»Y —AA/ and C»y _C'y }

Ap contains all 3 € A with Uy, # @. In particular, Ag is not empty since oy € Ag. Then, we

MW<LJMQU<[J %):3 <LJ%>0([J %>:g

aEAy acANAg acAy acANAg

If the complement A~ Ag is not empty, this contradicts to the connectedness of B. So we denote
them by A, and c,, respectively. Thus, we define the homomorphism p: I' = GL,(Z) x R" by

Py = (Ay, cy).

I' acts on R™ by p(z) = Ayx + ¢y for v € T and € R". The lift p, of p, to (M’',w’) is
defined by

ﬁ’Y([mOnyOé]) = [900/ o 5’)/ o 90;1(513047 ya)]

if (2o, Ya) is in ¢a(Us) x T™. By construction, p is a lift of p, and p and p satisfy dev(av(@)
Pry (dev(ﬁ)) and dev(a7 (b)) = py (dev(b)) respectively. |

Remark 2.23.

(1) By construction, the n-dimensional torus T™ acts freely on M’ preserving w’ from the right
so that ©#’: M’ — O is a principal T"-bundle.

(2) If 7: (M,w) — B admits a Lagrangian section, the restriction of mg: (R™ x T, wy) — R"
to O can be taken as 7’': (M',w’) — O. In fact, in this case, since 7: (M,w) — B is identi-
fied with the canonical model, we can take a system of local trivializations { (7r*1 (Ua), Lpa) }
with uag = 0 on each overlaps U,g. By applying the construction of =': (M’,w’') — O
given in the proof of Proposition 2.22 to such a {(ﬁfl(Ua), gpa) }, we can show the claim.

Suppose that (M, w) is prequantizable and let (L, V*) — (M, w) be a prequantum line bundle.
We denote by (L VL) (M w) the pullback of (L VL) (M, w) to (M w) By definition,
L admits a natural lift of the I'-action ¢ on (M w) which preserves VZ. The I'-action on (L v )
is denoted by o &. Then, we have the following prequantum version of Proposition 2.22.
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Proposition 2.24. There exists a prequantum line bundle (L’ VL) — (M'",w'), a bundle im-
mersion dev: (L VL) = (L, v ) which covers dev, and a lift p of the I'-action p on (MW"
to (L’ , VL/) such that dev is equivariant with respect to & and p. 0.

Proof. Let {(Ua, ¢a)} and { (7~ (Uy),w|z-1(17,), ¥a) } be the integral affine atlas of B and the
local trivializations of 7: (M ,@) — B obtained in the proof of Proposition 2.22, respectively.
Then, for each o € A there exists a prequantum line bundle

(Ga(Ua) x T™ x T, VE) = (¢a(Ua) x T™,wo)

and a bundle isomorphism v, : (E, VZ)|;;71(UQ = (¢pa(Ua) x T" x C, VLQ) which covers ¢. Now
we define (L’,VL/) by

(', V) =[] (¢a(Ua) x T" x C, vie)/~,

aEA

where (Ta,¥Ya,2%a) € ¢a(Ua) x T" x C and (xg,ys,23) € ¢g(Up) x T™ x C are in the relation
(:Ua,ya,lza) ~ (x3,ys, 23) if they satisfy (xg,ys,28) = Yo © wﬁl(xﬁ,yg,zﬁ) dev: (L VL)
(L', V) is defined by

dev(?) = [ta(0)]

it 7 is in (L, V) 1 0,)-
Suppose that for each v € I' the deck transformation 0 maps each U, to some U, as before.
Then, o, maps Lz-1(y,) to L% 1(w,,)- Then, the I'-action p is defined by

?iy(faa Yar Za) = [¢a’ © g'y © @b;l(l‘aa Yo, Za)]
if (Ta, Yo, 2a) 18 10 ¢ (Uy) x T™ x C. [
In the case where B is complete, we obtain the following corollary.

Corollary 2.25. Let w: (M,w) — B be a Lagrangian fibration with connected n-dimensional
base B and (L, V') — (M,w) a prequantum line bundle on (M,w). Let p: B — B be the univer-
sal covering of B. Let us denote by (M w) the pullback of (M,w) to B and denote by (L VL)
the pullback of (L VL) (M w) If B is complete, there exist an integral affine isomor-
phism dev: B — R”, aﬁ\/er -preserving symplectomorphism dev: (M w) (R™ x T, wo), and
a bundle_isomorphism dev: (L VL) (R” xT" x C,d —2ny/—1x - dy) such that dev covers
dev and dev covers dev, respectively. Here x - dy denotes ZZ 1 2;dy;. Moreover, let o be the
I- action on B defined as the inverse Qf deck transformations, o the natural lift of o to (M w)

and & the natural lift of & to (L v ), respectively. Then, there exist an integral affine T'-
action p: I' = GL,(Z) x R™ on R", its lifts p and ZXEO (R" x T™,wp) and (R" x T™ x C,d —
2/ —1x - dy), respectively such that dev, dev, and dev are I'-equivariant.

Proof. By construction of dev given in the proof of Proposition 2.22, if dev is bijective, so is
dev. The argument in [10, p. 696] and Theorem 2.20 also show that mp: (R™ x T™, wp) — R™ is
the unique Lagrangian fibration on R™ up to fiber-preserving symplectomorphism covering the
identity. In particular, 7’: (M’,w’) — R™ is identified with mp: (R™ x T™,wp) — R™.
Concerning the prequantum line bundle, it is sufficient to show that (R™ x 7", wp) has a unique
prequantum line bundle (R” xT" x C,d — 2m/—1x - dy) up to bundle isomorphism. Since wy
is exact, any prequantum line bundle on (R™ x T™, wyg) is trivial as a complex line bundle.
Let (R" xT"xC,d— 2ﬂ¢j1a) be a prequantum line bundle on (R™ x T, wy) with connec-
tion d — 2mv/—1a. Then, a — 2 - dy defines a de Rham cohomology class in H!(R" x T™;R).
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Since H'(R™ x T™; R) is isomorphic to H'(T™;R), in terms of the generators dy;’s of H*(T™;R),
a — x - dy can be described as

a—x-dy:ZTidyi—Fdf
i=1
for some 71,...,7, € Rand f € C®°(R"™ xT™). Now we define the bundle isomorphism #: R™ x
TP x C—>R"xT" x C by

P, y,2) = (z + (T,-),y,e_%\/jlf(w,y)z).
Then, ¢ satisfies 1*(d — 2mv/—1z - dy) = d — 27/~ 1. .

In the rest of this paper, we use the notations (Mp,wy) := (R” x T Y0 da A dyl-)
and (L(), VLO) = (R” xT"xC,d—2m\/—1x - dy) for simplicity.

Remark 2.26 (Hermitian metric on (LO,VLO)). By Corollary 2.25, any Lagrangian fibra-
tion 7m: (M,w) — B on a complete B with prequantum line bundle (L, VL) — (M, w) is ob-
tained as the quotient space of the I'-action on m: (Mp,wp) — R™ with prequantum line
bundle (Lo, V®) — (Mo, wo). By definition, the prequantum line bundle (L, V%) — (M, w)
is equipped with a Hermitian metric (-, -); compatible with V.2 The pull-back of (-, ),
to (LO,VLO) — (Mo, wp) coincides with the one induced from the standard Hermitian inner
product on C up to constant. In fact, it is easy to see that, up to constant, it is the unique
Hermitian metric on (LQ, VLO) — (Mp, wo) compatible with VX0, In the rest of this paper, we
assume that (Lg, VLO) — (My,wp) is always equipped with the Hermitian metric though we do
not specify it.

2.4 The lifting problem of fiber-preserving symplectomorphisms
to the prequantum line bundle

Let I be a group, and suppose that I acts on my: (My,wp) — R™ as fiber-preserving symplec-
tomorphisms. As in the previous section, we denote by p: I — GL,(Z) x R™ the I'-action
on R™ and also denote by p its lift to (Mp,wp). By Lemma 2.17, for each v € I, there ex-
ist A, € GL,(Z), ¢y € R", and a map u,: R™ — T™ with A, Ju., symmetric such that p, and p,
can be described as follows

py(@) = Ayz + ¢y, py(@,y) = (Aya + ¢y, tAy_ly + uy(2)). (2.3)

Note that since (2.3) is a I"-action, A, ¢y, and u, satisfy the following conditions:

Ay = Ay Ay, Cyiya = Ay Cyy + Oy Unyyy (T) = tA;11u72 (7) + uyy (prp () (2.4)

for v1, 2 € I/, and € R". Let u, = t(ﬂ}y,...,ﬂ’;): R™ — R" be a lift of u,. For u, and

t1=1,...,n, we put
0 0 0

n T;

Fi(z) = <t A, /O " ﬂw(m)dxi)i =>"(a,), / W (w)dz;.

j=1 0

and

*A Hermitian metric (-, -), on L is compatible with V* if it satisfies d((s1, s2),) = (V"s1, s2)
for all s1,s2 € I'(L).

Lt <51’ VL32>L
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Let N € N be a positive integer. Each p., preserves Nwy, hence, I' also acts on my: (My, Nwy) —
R™ as fiber-preserving Symplectomor%hisms. Then, we examine in detail the conditions for the
I’-action to have a lift to (LO, VL0)® — (Mo, Nwp). The purpose of this subsection is to show
the following lemma which gives the necessary and sufficient condition on the existence of a lift
of the I'-action, and which also gives the explicit formula for the lift when this condition is
satisfied.

Lemma 2.27.

(1) For each v € T, there exists a bundle automorphism ;7 of (LO,VLO)®N preserving the
Hermitian metric and the connection such that p., covers p if and only if cy is contained
mn %Z”. Moreover, in this case, p., can be described as follows

Dy (2,9,2) = (By(@,y), g, TINE @ e (4510} ) (2:5)

for (x,y,2) € LYY = R™ x T™ x C, where g, is an arbitrary element in U(1) and

n

G(x) == py(z) - Uy(x) — cy - Uy (0) — ZF};(O, e 0,24, ).
i=1

The formula (2.5) does not depend on the choice of ..

(2) Under the condition given in (1), the map p: T — Aut((Lo,VL°)®N) defined by (2.5) is
a homomorphism if and only if the map g: I" > v +— g, € U(1) is a homomorphism and
for all v1,v2 € TV and x € R", the following condition holds:

{_071 “ Uy, (0) + ¢y 'tA%lu'yz(O) + Py (Cy3) - Uy (072(0»}

n ; (p'YQ (m))z
-3 (a4, /0 Uy (010,75, (poa ()i 1 -+ (P () )T
=1

%

)

n T:
i 1
+ E tAA/QtA,Yl Uny,y (p,Y2 (O, 0T i, xn))dn € —7.
i=1 0 N

Proof. For each v € I, we put
ﬁv(x’ y,z) = (ﬁv(xa y), e%{'g??(fL",y)Jr\ﬁﬁi(ﬂf,y)}z)7

where gﬁ and §,Iy are é%al valued functions on My. By the direct computation, it is easy to see
that p., preserves Vi =d—2m/—1Nz - dy if and only if 55 is constant and §§ satisfies the
following conditions:

02,08 = N(Ayz + ) - Oa, Uy, (2.6)
~1 -1
0y = N (A7 cy),
fori =1,...,n. The conditions for the complete integrability of the system of partial differential

equations (2.6) and (2.7) are as follows:

axlamjgfly - a;tj ang'lya (2'8>
amiang’{/ = ayj6$i§§7 (2.9)
0y,0y, = 0,0y, (2.10)

3In the rest of this paper, we often use the notation u. instead of ..
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for i,7 = 1,...,n. From (2.6) and (2.7), (2.9) and (2.10) are true because both sides of each
vanish. From (2.6), (2.8) can be expressed as

(tAWaIiu"/(w))j = (tA“/aﬂCqu(x))i (2.11)

for ¢,j = 1,...,n. But, since *A,Ju, is symmetric, (2.11) is also valid. Therefore, we know that
there exists 'gg that satisfies (2.6) and (2.7). In fact, such a @Iy is given by

§§(:z:,y) = 55(0,0) + N{py(:z:) Uy (x) — ¢y - Uy (0)
—ZFé(O,...,O,xi,...,xn)—i—cy-tAvly}. (2.12)
i=1

Since y € T™, §£ should satisfies 2™V ~197(0i) = 27V=15(0.0) for a]] § = 1,...,nand v € T".
This holds if and only if A;lNcw ce; € Zforalli=1,...,nand v € I". Since A, € GL,(Z),
this is equivalent to the condition Nc, € Z". In this case, we put g, := 27 (@ (0,0)+v=1g5(0,0)
Since Ap? preserves the Hermitian metric on (Lo, V) — (Mo, wo), gy is contained in U(1). The
formula (2.5) does not depend on the choice of u, since the difference of two lifts of u, is in Z".
This proves (1).

The map p defined in (2) is a homomorphism if and only if 92 (x,y) — §§(O, 0) defined by (2.12)
satisfies the cocycle condition. By a direct computation using (2.4), it is equivalent to the ones
given in (2). |

Example 2.28. Let B be the n-dimensional integral affine torus given in Example 2.3 (1) for
a linear basis vy, ...,v, € R". The product B x T™ admits a symplectic structure w so that the
trivial torus bundle 7: (B x T",w) — B becomes a Lagrangian fibration. This is obtained as
the quotient space of the action of I := Z™ on mp: (Mp,wp) — R™ which is defined by

py(2,y) = (z + Cv,y)

for v € T” and (z,y) € My, where C = (v1---v,) € GL,(R). Let N € N be a positive
number. The IV-action p on (My, Nwp) has a lift to the prequantum line bundle (Lo, VL0)®N —
(Mp, Nwp) if and only if all v;’s lie in %Z”, and in this case p is given by

Py (@,y,2) = (7, y), o™V TN Vz)
for v € T" and (z,y,2) € LY = R x T" x C, where g: T 3 v ++ g, € U(1) is an arbitrary
homomorphism.

Example 2.29 (the Kodaira-Thurston manifold). Let ' be Z2. Let us consider the I'-action
on my: (]R2 x T2, wo) — R? which is defined by

py(x) =z 4, py(@,y) = (oy (), y + uy(2))

for v € I" and (z,y) € R? x T?, where u,(z) = (0, y122). The Lagrangian fibration given by the
quotient of this action is denoted by 7w: (M,w) — B. M was first observed by Kodaira in [26] and
Thurston pointed out in [41] that (M, w) does not admits any Kéahler structure. M is nowadays
called the Kodaira-Thurston manifold. Let N € N be a positive number. The I''-action p on
(R2 x T2, Nwo) has a lift to the prequantum line bundle (R2 xT? x C,d —2n/—1Nx - dy) —
(R2 x T?% N wo) if and only if N is even, and in this case the lift 5 is given by

B2,y 2) = (py(,y), gye®™V T INEMab T2 70 )

for v € I'” and (z,y,2) € R? x T? x C, where g: I 3 v+ g, € U(1) is an arbitrary homomor-
phism.
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Example 2.30. Let B be the n-dimensional integral affine torus given in Example 2.3 (1) for
a linear basis vy,...,v, € R®. When all v;’s are integer vectors, i.e., vy,...,v, € Z", we can
generalize Examples 2.28 and 2.29 in the following way. For ¢,5 = 1,...,n, choose u;; € Z"
satisfying u;; = uj;. For each v € IV := Z", we define the map u,: R" — T" by
Uil -y vt Ulp Y
Uy () == : : x,
Up1 =Y -+ Upn 7

and we also define the action of IV on my: (My,wp) — R™ by

py(@,y) = (z+ Cv, y+uy(z)) (2.13)

for v € IV and (z,y) € My, where C = (v1 -+ vy,). Then, the quotient 7: (M,w) — B obtained
as the I-action (2.13) is a Lagrangian fibration on B. Let N € N be a positive number. The
IM-action p on (Mg, Nwp) has a lift to the prequantum line bundle (Lo, VL0)®N — (My, Nwy) if

and only if %vi ~Ujv; € Zfor all 4,5 = 1,...,n, where
(uir); -+ (uin)j
Uj = . .
(un1); -+ (unn)j

And in this case, the lift p is given by

B (@,,2) = (5 (1, y), gy @@V TN {0 @) (02 @)= (0) 1 (02 ()} (04 )

for v € T and (z,y,2) € L%QN =R"” x T™ x C, where g: I" 5 v — g, € U(1) is an arbitrary

homomorphism.

Example 2.31. Let n > 2 and Ay,...,\,—1 € Z. Let I be the group (Z",0) given in Exam-
ple 2.6. For each v € I, let A, be the matrix

1 Al Tn

1 X

A, = : .
1 )\n—l
1
and u: R™ — T the map defined by

0

Uy () == 0
YnTn

Let us consider the I'V-action p on my: (Mp,w) — R™ which is defined by
py(@,y) = (Ayz + 7, ATy + uy (2) (2.14)

for v € I" and (z,y) € My. Then, the quotient 7: (M,w) — B obtained as the I-action (2.14)
is a Lagrangian fibration on the integral affine manifold B obtained in Example 2.6. Let N € N
be a positive number. The IV-action p on (My, Nwy) has a lift to the prequantum line bun-
dle (LO, VL0)®N — (My, Nwyp) if and only if N is even, and in this case the lift p is given by

EV (.CI?, Y, Z) = (IBW (JZ’, y): g,YeQTF\/?lN{’Yn$n(%xn-i-’yn)—l—'y-(tA;ly)}z)

for v € " and (z,y,2) € L§Y = R™ x T™ x C, where g: I 3 v + g, € U(1) is an arbitrary
homomorphism.
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3 Degree-zero harmonic spinors and integrability
of almost complex structures

Let N € N be a positive integer. For a compatible almost complex structure J on the total space
of the Lagrangian fibration mg: (Mg, Nwo) — R™, let D be the associated Spin® Dirac operator
with coefficients in the prequantum line bundle (LO, VL0)®N — (Mo, Nwp). An element in the
kernel ker D of D is called a harmonic spinor. In this section, for J which is invariant along the
fiber in the sense of Lemma 3.6, we investigate the condition on the existence of nontrivial degree-
zero harmonic spinors, i.e., nontrivial sections which is contained in ker D. For the construction
and properties of the Spin® Dirac operator, see [11, 30].

3.1 Bohr—Sommerfeld points

Let m: (M,w) — B be a Lagrangian fibration with prequantum line bundle (L, VL) — (M, w).
We recall the definition of Bohr—Sommerfeld points.

Definition 3.1. A point b € B is said to be Bohr-Sommerfeld if (L, VL)|W71(Z,) admits a non-
trivial covariant constant section. We denote the set of Bohr—Sommerfeld points by Bgs.

Let us detect Bohr—Sommerfeld points for mg: (My, Nwg) — R™ with prequantum line bun-
dle (Lo, VE0)*N — (Mo, Nuy).

Proposition 3.2. A point x € R™ is Bohr—Sommerfeld if and only if x is contained in %Z”,

i.e., Rjg = L7Z". Moreover, for a Bohr-Sommerfeld point x € %Z”, a covariant constant

section s of (LO,VL°)®N‘7T-1(JC) is of the form s(y) = s(0)e2™V—INzy
0

Proof. For a fixed z € R™, a section s of (Lq, VL°)®N}W71(QC) — 7y *(x) is covariant constant if
and only if s satisfies ’

QN
0= ngo_ 5§ =0y;5 — 21V —1Nuz;s

for i = 1,...,n. Hence, any covariant constant section s should be of the form s(y) =
s(O)eQﬂﬁN”y. Since 7r0_1(:):) is a torus, s is periodic with respect to y;’s. In particular, s satis-
fies 5(0) = s(e;) = $(0)e2™~IN%i for j = 1,. .., n. This implies that (Lo, VL0)®N|W71(@—> 7o (2)
admits a nontrivial covariant constant section if and only if Nz; € Z for ¢ = 1,. O,n |

Remark 3.3. Suppose that 7y: (My, Nwp) — R™ is equipped with an action of a group I which
preserves all the data, and its lift p to (Lo, VL0)®N is given by (2.5). Then, by Lemma 2.27 (1),
the I'-action p on R™ preserves Riq. When the I'-action p on R™ is properly discontinuous and
free, let ' C R™ be a fundamental domain of the I'-action p on R™. Then, the map

1 m m
I'x (Fn=z" (7) N (7) zn 1
><<ON>97N+—>,07N€ (3.1)
can be defined and is bijective. In particular, if a Lagrangian fibration 7: (M, Nw) — B with
prequantum line bundle (L, vE )®N — (M, Nw) is obtained as the quotient space of the I'-action,
then F'N %Z” is identified with Bgs.

3.2 Almost complex structures

Let S, be the Siegel upper half space, namely, the space of n X n symmetric complex matrices
whose imaginary parts are positive definite

Sp={Z=X+V-1Y € Mp(C) | X,Y € My(R),'Z = Z,and Y is positive definite}.
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It is well known that &), is identified with the space of compatible complex structures on the 2n-
dimensional standard symplectic vector space. See [32, Chapter II, Section 4].

For a tangent vector u = Y i {(uz)iOz; + (uy)i0y; } € T(yyMo at a point (z,y) € My, we
use the following notation:

(ua:)l

Uz )n Uy
W= Darsee sy Dy D) | () :(ax,ay)< )

(uy)1 Uy
(uy)n
where
(uz)1 (uy)l
O0r = (Oyy---,01,), 8y:(8y1,...,8yn), Uy = : , Uy =
(Uz)n (uy)n

In terms of the notations of tangent vectors u = (0, dy) (uy ) and v = (0, 0y) (vy ) € T(a,y) Mo,
wo can be described by

wolu,v) = (g, fuy) <OI é) (22) .

Since the tangent bundle T'Mj is trivial, the space of compatible almost complex structures
on (My,wp) is identified with the space of C*° maps from My to S,,. For Z = X + /1Y €
C*°(My, S,), the corresponding almost complex structure Jz is given as follows:

Xy-1 -y - Xy-lx U
JZ'LL = (8x, 8y) < Y_l —Y_lX ) ( > (32)
(z,y)

Uy

for u = (0z,0y) (uy ) € T(zy) My.* Then, the Riemannian metric ¢ determined by wg and Jz can
be described by

0 I\ /XY ! —-Y-XY X\ (v,
g(u,'l)) L= wo(U7J'U) = (tumatuy) <—I O) ( Y—l _Y—IX ) < >

Uy
Y-t -Y'X > (v )
t t T
= ("ug, ‘u _ ~ : (3.3)
( s tty) (—XY DY+ Xy1X ) \v,
Let J = Jz be the almost complex structure on (My,wp) corresponding to a given Z =
X +v-1Y € C®(My,Sy). Then, (—=J0,,0y) = (—=J0y,,...,—J0y,,0,...,0y,) is also a basis

of the tangent space of (Mp,wp). For each tangent vector u € Tz,4)Mo, by using this basis, u is
expressed as follows:

=D {(um)i(=J0y,) + (u)idy} = (=J0,,0,) @5) .

Then, we have the following transition formula between (0, 0,) and (—J09,, 0y):

u=(—Jd,,d,) <Z§> = (0, 8,) <(__)§Y]1 Y+YX1Y);1X> (i{) + (uov>> .

By this formula, we obtain the following lemma.

4(XY_711 _Y_X_lrlx) , (XYfl) etc. are the values of the maps (XY_ZI _Y_X_’rlx), XY ! etc. at
Y -Y X (z,y) (=) Y -y~ lx

(x,y). We will often omit the subscript “(,,)” for simplicity unless it causes confusion.
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Lemma 3.4. In terms of this notation, the Riemannian metric g defined by (3.3) can be de-
scribed by

y—! .4 0
_ t
g(u,v) = (0, un) <—XY1 Y+XY1X) <UH>

y-1 —y-lx 0
t
+(0,"uv) (—Xy—l Y+XY—1X> <W>'

Suppose that a group I' acts on m: (Mp,wg) — R™ and the I'-actions p on R™ and p
on (My,wp) are written as in (2.3). Then, it is easy to see the following lemma.

Lemma 3.5. The I'-action p on (My,wp) preserves the almost complex structure J = Jz
on (My,wp) corresponding to Z = X +/—1Y € C*(My, S,,) if and only if the following condi-
tions hold:

Ay(XYTH L= (XY S Ay = (VXY TIX) S (Jug)a, (3.4)

A(Y +XYTIX) o= (V+XYTIX), AT (3.5)
1 -1y -1 _ y—1 -1

(Jun)e (XY ) ) + A5 Vi) = Y oAy = (VT X5 o ()

Proof. For all y € " and (z,y) € (Mp,wp), the condition

(dﬁ’y)(x,y) © J(x,y) = ']ﬁ»y(a;y) © (dﬁ’y)(x,y)
implies above three equalities together with the following equality:

(Juy)z (Y + XY 1X) = (Y7'X) PA?

t 4—1 —1
+H AT (Y TX) Pl

(z,y) (z,y)

But, this can be obtained from (3.4), (3.5), and *(*A,(Ju,)z) = "Ay (Juy ). |

Let 7: (M,w) — B be a Lagrangian fibration with complete n-dimensional base B and
p: B — B the universal covering of B. By Corollary 2.25, the pullback of 7: (M,w) — B to B
is identified with mg: (Mp,wp) — R™ and 7: (M,w) — B can be obtained as the quotient of
the I' = 71 (B)-action on mp: (My,wo) — R™. In particular, for each compatible almost complex
structure J on (M,w), there exists a map Z; = X + /—1Y € C*®(M,,S,) such that the
pullback p*J of J to p*(M,w) coincides with Jz,. Then, we have the following lemma.

Lemma 3.6 ([15, Corollary 9.15]). For any Lagrangian fibration 7: (M,w) — B, there exists
a compatible almost complex structure J on (M,w) such that the corresponding map Zj does
not depend on yi,...,yn. We say such J to be invariant along the fiber.

Proof. Take a Riemannian metric ¢’ on (M,w). Then, the pullback p*g’ is 71 (B)-invariant.
Moreover, p*(M,w) admits a free T"-action, and this T™-action together with the 7 (B)-action
forms an action of the semi-direct product m(B) x T™ of T™ and m1(B). By averaging p*¢’
over T™, we obtain a Riemannian metric on p*M invariant under the 71 (B) x T™-action. It is
easy to see that p*w is also 7 (B) x T™-invariant, so by the standard method using the 71 (B)xT"-
invariant Riemannian metric and p*w, we can obtain a 71 (B) x T"-invariant compatible almost
complex structure on p* (M, w). In particular, since the almost complex structure is still invariant
under m (B)-action, it descends to (M,w). This is the required almost complex structure. W
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3.3 A condition on the existence of nontrivial harmonic spinors
of degree-zero

For amap Z = X +/—1Y € C®(My, S,), we set
Q= (Y + Xy 'x)"'zy L (3.6)
Lemma 3.7. Q has the following properties:
(1) Q= Z ', where Z = X — \/—1Y.
(2) Q is symmetric, i.e., Q= Q.

Proof. A direct computation shows that QZ = I. This proves (1). (2) follows from (1) since Z
is symmetric. [

Let N € N be a positive integer. Let J = Jz be the compatible almost complex structure
on (My, Nwg) corresponding to a given Z = X + /1Y € C*(My,S,). Then, the Rieman-
nian metric Ng := Nwq(-, J:) defines an isomorphism f: T*My = TMy by 7 = Ng(f(7), -)
for T € T*My. For i = 1,...,n, let €; denote the ith column vector of €2, and Re(); and Im ;
be the real and imaginary parts of €);, respectively. Then, we can show the following lemma.

Lemma 3.8. Fori=1,...,n,
1

Proof. We prave the latter. The former can be proved by the same way. Put f(dy;) =
(—J0y, 0y) ( H) By definition, for each i,5 = 1,...,n, we have

vi )
dyi(—J9,,) = Ng ((—Jay,ay) (}{5) (=0, 0,) <€5)> , (3.7)
dy:(8,,) = Ng <(Jay,ay) (?;f) [(=JD,,0,) @)) . (3.8)

Since —J ﬁyj is written as

_ XY ' Y4+ XY X (0
—J0y, = (Og, 0y) ( _y-1 yolx > <ej>

by (3.2), the left-hand side of (3.7) is (Yle)i.. On the other hand, by Lemma 3.4, the
right-hand side of (3.7) can be described as NYj; - (Y + XY 'X)e;. This implies Y 'X =
Nt(Yé---Yﬁ) (Y + XY’lX). Since Y is positive definite, so is Y + XY ~'X. In partic-
ular, N(Y 4+ XY 1X) is invertible. By using 'X = X, 'Y = Y together with this fact,
we can obtain (Y}ll - Yg) = %(Y + XYle)leYfl. By the same way, from (3.8), we ob-
tain I = NU(YE-- Y) (Y + XY71X), e, (it Y?) = £ (Y + XY LX) "', Hence, £ =

(Vi V) VTR 7). :
Define the Hermitian metric on (My, Nwo, Ng, J) by
h(u,v) == Ng(u,v) + vV—1Ng(u, Jv) (3.9)

for u,v € Tiy, Mo. Let (W,c) be the Clifford module bundle associated with (Ng,J), i.e., as
a complex vector bundle, W is defined by

W= A*(TMo, J) @c (L§Y).
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W is equipped with the Hermitian metric induced from h and that on L, and also equipped
with the Hermitian connection, which is denoted by VW, induced from the Levi-Civita connec-
tion V€ of (Mg, Ng) and V0. ¢ is the Clifford multiplication c¢: TMy — Endc(W) which is
defined by c(u)(7) ;== u AT — uLp7 for u € TMy and 7 € W, where v, is the contraction with
respect to the Hermitian metric h on (My, Nwo, Ng, J). It is well known that W is identified
with A®(T* M) ®c (L0®N ) as a Clifford module bundle since h induces the isomorphism from
(T My, J) to (T*My)%! as Hermitian vector bundles. See [11, pp. 12-13] for more details.

Now let us define the Spin® Dirac operator D: I'(W) — I'(W) by the composition of the
following maps:

D: T(W) —Y21(T* My © W) 2 D(T My © W) <~ T(W).

We compute the action of D on degree zero elements in I'(IW). We identify a section of Ly with
a complex valued function on My. By using Lemma 3.8, for a section s of Ly®", Ds can be
computed as

Ds=co(f®idwy)oV s—co(f®1dw)(ds—27r\/7Na: dys)

Z f(dz:))(0z,8) + c(f(dy;)) (8y, s — 2wV —1Nw;s) }

=1
vl Z Ay, Oc {Oxis + ) 9;(9y;s — 2mV/~1Nz;s5) }
i=1 Jj=1

In particular, the equality Ds = 0 is equivalent to
Oy, 8 Oy, 8 — 21/ —1Nzs
0= : +Q : . (3.10)
Oz, Oy, s — 2m\/—1Nmys

For a section s of Lo®Y, let us consider the Fourier series expansion of s with respect to v;’s.
For each x € R"™, as a function of y;’s, s(x,-) can be expressed as the Fourier series

s(@y) = Y am(z)e?™Y MY, (3.11)
mez"™

where ap(z) == [, s(x,y)e_%‘/jlm'ydy for m € Z"™. Suppose that Z does not depend on
Y1,---,Yn as in Lemma 3.6. Then, by using the Fourier series (3.11), the equation Ds = 0 can
be reduced to the following system of differential equations for a,,’s with variables z1, ..., z,.

Lemma 3.9. s satisfies Ds = 0 if and only if a,,’s satisfy
Oz, Qm,
0= : + 27V —1apnQ(m — Nzx) (3.12)
O, O,

for all m e Z™.

Proof. By Lemma A.1, the partial derivatives 0,,s and 9;s have the following Fourier series
with respect to y;’s:

= Z a,cjam(x)e%ﬁm'y, (3.13)
mezZmn

Oy, s(w,y) = Z QW\/—lmjam(x)e%\/?lm'y forj=1,...,n. (3.14)
mez”

Then, substituting (3.11), (3.13) and (3.14) into (3.10), we can obtain (3.12). [
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We investigate the equation (3.12).

Lemma 3.10. Let a,, be a solution of (3.12) for some m € Z"™. If there exists p € R™ such
that am(p) =0, then am,(x) =0 for all z € R".

Proof. First, fix the variables xo, ..., x, to equal pa,...,py, respectively. Then, the first entry
of (3.12), i.e., 0 = Opy am + 27/ —1ay (Q(m— Nz)); can be thought of as an ordinary differential

equation on x1, and a,,(z1,p2,...,pp) is its solution with initial condition a,,(p) = 0. On the
other hand, the trivial solution also has the same initial condition. By the uniqueness of the
solution of the ordinary differential equation, a,,(z1,p2,...,pn) = 0 for any x;. Next, by fixing
variables x3, ..., 2z, with ps,...,p, and fixing x1 with arbitrary value, a,,(z1,22,p3,...,Dn) is
a solution of 0 = Oy, am + 27/ —1am, (Q(m — Nx))s with initial condition a,(x1,pa,...,pn) = 0.
Then, a,,(r1,z2,ps,-..,pn) = 0 for any x1, 9. By repeating the process for z3, ..., z,, we can
show that a,,(z) = 0. [

Lemma 3.11. If a,, is a nontrivial smooth solution of (3.12) for some m € Z", then the
condition

((Ole)m (m—N:E))j = ((Oggj.fl)llc (m—N:L‘)) (3.15)

i

holds for alli,j =1,...,n and x € R™. Conversely, if there exists m € Z" such that (3.15) holds

foralli,j=1,...,n and x € R™, then (3.12) has a unique nontrivial solution up to constant.
Moreover, in this case, each solution a, of (3.12) has the following form:
am () = am <%) e_Q’“/le?:lG%(%v"'v%v%m@n)’ (3.16)

where an () can be taken as an arbitrary constant in C and G, (x) := ([m; Q(m — Nx)da;),.
N

Proof. Since a, is smooth, ap, satisfies 0y,0x;am = Oy, 0r,am for all 4,5 = 1,...,n. By differ-
entiating (3.12), we have

axiaxjam = — 27‘(’\/ —1am {—27‘(’\/ -1 Z Qik(mk - ka) Z le(ml — N:L‘l)
k=1 =1

+ Y (95, ) (mi — Nay) — NjS}

=1

fori,j=1,...,n and x € R™. The condition (3.15) is obtained from this equation.

Conversely, suppose there exists m € Z™ such that (3.15) holds for all 4,5 = 1,...,n and
x € R™ By solving the differential equation appeared as the ith component of (3.12) for
i=1,...,n, we have

am(x) = an, (iL'l, e, T, %, Tid1ye -, a:n> e~ 2V =160 (@) (3.17)

Using (3.17) repeatedly, we obtain the formula (3.16). By using (3.15), we can show that (3.16)
does not depend on the order of applying (3.17) to z;’s as in the proof of Lemma 2.27. Hence,
(3.16) is well defined. [ |

Definition 3.12. We say m € Z" to be integrable if (3.15) holds for all 4,5 = 1,...,n and
xz € R".
For each m € Z"™ which is integrable, define the section s,, € F(L0®N ) by
sm(z,y) = o2V I X0y G (b T @i ) +mey} (3.18)

By the elliptic regularity of D and Lemma 3.11, we can obtain the following.
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Proposition 3.13. If
s= Z am(x)e%mm’y e I'(Ly®™)
mezn

is a nontrivial solution of 0= Ds, then all m € Z"™ with a, # 0 are integrable. Conversely,
suppose that there exists m € Z" such that m is integrable. Then, the section s, defined
by (3.18) satisfies 0 = Dsyy,.

The following proposition gives a geometric interpretation of the condition (3.15).
Proposition 3.14. The following conditions are equivalent:

(1) Allm € Z™ are integrable.
(2) 02, Qjp = 0, Q. for all i, j,k=1,...,n
(3) VECJ =0, where VLC is the Levi-Civita connection with respect to g.

A proof of Proposition 3.14 is given in Appendix B.

Remark 3.15. When one of (hence, all) the conditions in Proposition 3.14 holds, (M, wo, J, g)
is a K#hler manifold and J induces a holomorphic structure on Lg such that V20 is the canonical
connection.

3.4 The I'-equivariant case

Suppose that mg: (My, Nwg, J) — R™ with prequantum line bundle (Lo, VL°)®N—>(MO, Nuwy, J)
is equipped with an action of a group I' which preserves all the data, and the I'-actions are
described by (2.3) and (2.5) as before. We assume that the I'-action p on R" is properly
discontinuous and free. Since the I'-action preserves all the data, the Spin® Dirac operator D is
I'-equivariant. In particular, I" acts on I‘(L0®N ) Nker D.

Lemma 3.16. Let s be a section of Ly®" with the Fourier series of the form (3.11). Then, s is
[-equivariant, i.e., p,os = sopy for all v € T if and only if an, satisfies the following condition:

anp, () (P (7)) = gy ()™ "IN @) =ps ()1 ()} (3.19)

for ally € T, m € Z", and © € R™. In particular, any T-equivariant section of Lo®N can be
written as follows:

s(z,y) = > Gyam(py=1 (x))

(v, B)ET X (FN&Z™)
« e%ﬁN{%(pw—l( 2)) =P () ury (py—1(2))} 27V =INpy (F)y (3.20)

Proof. By computing the both sides separately, we have

fﬁ,yos(m,y) =g, o2V =IN{g, (2)+ey L ATy} Z 271'\/7my
mezZm™
=gy 3 (@)™ TING @) 2SI () A5y
meZ"L
p- =1l “Lytu(z
Sop,y(qj,y) = Z al(p,y(x))GQ V=TI (CAS fytuy ()
lezn

- Z ANp (m)(P"/(5‘7))ezw\/lepW(%)'uV(x)eQ“HNPW(%)‘tAily_
YA\N

mezZmn
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Here, in the last equality, we replace [ by Np,(%;). Note that the map

m
Z's5me Np, (52) €2"
>m (7)€
is bijective. Then, Api/ os = sop, for all v € I' implies
g'yam(x)e%r\/—ilN@y (z) 2m/—1N py (5¥)-u~ ()

= an,,(m)(py(2))e

for all m € Z™. In particular, by (3.1) and (3.19), s can be rewritten as follows:

o) = Y™ Yy g e e

lezr (7, 2)eM x (FN&Zn)

(319 Y gamlpy (@)

(7,%)€F><(FO%Z")
« 2TV =IN{G, (o, —1 () =p~ (5)-ty (-1 (2))} 27V =TINpy (5 Y [

In the I'-equivariant case, the condition (3.15) has a symmetry in the following sense.

Lemma 3.17. There exists mo € Z" with 3> € F such that mq is integrable if and only if for
any v € I' m = Np,("3) is integrable. Moreover, let a,,, be a nontrivial solution of (3.12) for
mg. For each v € T', we define AN py (0 in such a way that it satisfies (3.19). Then, AN p (o)
is a nontrivial solution of (3.12) for m = Np,(R).

Proof. Suppose that there exists mg € Z" with i € F such that mg is integrable. By
Lemma 3.11, (3.12) for mg has a nontrivial solution amo Then, for each v € I, define ay, ()
by (3.19). By Lemma 3.11 again, in order to show this lemma, it is sufficient to prove a Np. (™0

is a solution of (3.12) for m = Np,(%?). Let us compute the Jacobi matrix of the both suﬁ’es
of (3.19). The left-hand side is

Janp,(moy 0 py)e = Jay, (m0))p, @) (Ipy)a
= (Ozlapr(%), . ,Gxnava(%))pw(m)Av. (3.21)
The right-hand side is
J(gvam(:n)e%ﬁN{%(1’)_‘”(%)'"7(“5)})

xT

— g, 2V TN @) G (Ja,0), + g (2)T (27 TNG @2 (R ()
t

(
(312) —2my/—1g, ™V ING @) =p ()@, (1) (Qu(m — Na))
1 200V TN g ()2 IV (@) =02 (R 1 0} (gj,y ;,; (%) : u,y(a:)>

(z) — py
s _271_\/70’Np mg (pfy(:v))t (QxA,;l (N,O'y (% —Npﬂx)))

N
- m
+ 27T\/—1Napr(%)(p«,(:r))J (gq,(:v) — Py (N uv(:p)) . (3.22)
For each i = 1,...,n, the direct computation shows

0 (50101 () t0)
= (O,ty)e - (,07(90) — Py (%)) + (tAyufy(a:))i — (*Ayuy(0,...,0,2;,. .., Tn)),
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= (Op;Uy)z - (pv(x) + Z/ e, ((Ayuy (0,0, 0,25, .., 2y)), da

J<1
- Z/ ’ (tA,YJuv)jZ. 0,...,0,z,...,2,)dz;
j<i ”0
= (Op,Uy)z - (p,y(m) + Z/ (A Ju7 (0,...,0,zj,...,x,)dx;
1<t
_Z/ AJu7 ]Z(O,...,O,xj,...,a?n)d:cj
1<t

— (O Uy )z - (:07 <%) - P’y(»”)) :

In the last equality, we used t(tAWJuA,) ="'A,Ju,. Hence, we have

(3@ =00 (5) @) == (0, () = 2(@) Gus), - (3.23)
By (3.21), (3.22) and (3.23), we obtain

A (Tayy, (20)) @)
= —27r\/7a]vp ™) (p 7(37))(91‘4;1 "‘t(J“w)x) (NPW (%) - NPW(@) .

N

On the other hand, by (3.4) and (3.5), we have
tA’ypr(x) = QxAW_I + t (Juv)x . (3.24)
This proves the lemma. |

Remark 3.18. By Remark 3.3 and Lemma 3.17, all 7 € F'N %Z” are integrable if and only if
the condition (1), hence all conditions in Proposition 3.14 holds.

4 The integrable case

In this section, we investigate the case where the almost complex structure is integrable in
details. We use the setting and the notations introduced in the previous section.

4.1 Definition and properties of ¥m

Let 2 € FN+Z" be the point which is integrable, and a,, the nontrivial solution of (3.12) of the
form (3.16) Wlth am(%) = 1. For each y € I', define ay,, (=) in such a way that it satisfies (3.19).
As we showed in Lemma 3.17, ay,, (m) is a nontrivial solution of (3.12) for Np,(%). Then, we
define the formal Fourier series 19m by

= D g, (@)Y TN R (4.1)

m
N (%)
yel

Proposition 4.1.

(1) Y= has the following expression:

I (z,y) = D gy ™V HOR O +Non ()0},

~yel'

m
N
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where

0 () = ZG’ (5 S (0 @i (041 (@)

m

+N {%(,37,1(3;)) — 00 (%) oy @)}

(2) Y= can be described as Vm =3, cp ?7 O Sm © py—1, where sy, is the section defined by (3.18).

(3) If Y + XY X is constant, then 19% converges absolutely and uniformly on any compact
set.

Proof. (1) and (2) are obtained by (3.19), (3.16), (2.5) and (3.18). Let us prove (3). By (2.4)
and (3.5), we obtain

AL (Y + XY TIX) AL = (Y + XY IX) L

By using this formula together with the assumption, the expression in (1) can be rewritten as

v = Z gvezﬂﬁ[\/?]v (I*P"/(%))'(YZFXY*lX)’I(xfp,y(%))Jrreal part] )

yel’

m
N

Since (Y + XY 'X )_1 is positive definite, there exists a positive constant ¢ > 0 such that
(Y + XY1X) ™" > ¢l Then,

|9762W\/—71[‘/?N (z=py (F)) (Y +XY 71X) " (2 —py (5})) Freal part] |

— o Nr(a—py(F) (Y+XY 1 X) " (z—py (F)) < o—cNllz—py (F)II?

— o~ cNrlla—%|? ( £ 1= N (@))
e put [ : 236

Hence, the series is dominated by ]}, Zliez e~eN ”(lﬁl_xi)2 Any compact set is contained in
a product of closed intervals I; x --- X I, so it is sufficient to show that Zleze oNm(x—2)
converges uniformly on any closed interval I. Suppose that I is of the form [ := [xm,$ M]

Set Iy :=max{l€Z| L eI} and ly, :=min{l € Z| L eI} OnlI, Y _ k<i<k © —eNm(y—a)?

can be estimated as

Z o—cNm(—2)2 :< Z n Z I Z >—CN7T(N—$)

—k<i<k —k<I<lm  Im<I<lpy 1y <<k
S Ny ey S e
—k<I<lm I <I<k
lm —c7r k —=c 2
</ e (7o sz)dT—i—(lM—l—i-l)—i-/eN ) dr.
—k I
It is well known that f m e N (T=Nem)*qr and fl ~ (T=N2w)® 47 converge as k — +o0. [ |

Lemma 4.2. Let s be a section of Lo®N with Fourier series of the form (3.11). If s is a nontriv-
ial T'-equivariant solution of 0 = Ds, then there exists 37 € F' N %Z” such that m is integrable.
Conversely, suppose that there exists 5z € F N %Z” such that m is integrable and 19% converges

absolutely and uniformly on any compact set. Then, 19% s a nontrivial I'-equivariant solution
of 0 = Ds.
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Proof. Since s = Y ;cym ay(x)e*™V =1 is nontrivial solution of 0 = Ds, by Proposition 3.13,
there exists [ € Z" such that a; # 0. On the other hand, as is noticed in Remark 3.3, there
exists (v, %) € I' x (FN{Z") such that [ = Np,(%). Since s is T-equivariant, by (3.19),
0f£a =a Npy(2) implies a,, # 0. The latter part follows from the definition of 19%. |

Let 7m: (M,w) — B be a Lagrangian fibration on a complete base B with prequantum line
bundle (L,VL) — (M,w). By Corollary 2.25, they are obtained as the quotient of an action
of I':=m(B) on (LO,VLO) — (My,wp). Let J be a compatible almost complex structure
on (M,w) which is invariant along the fiber in the sense of Lemma 3.6 and DY the associated
Spin¢ Dirac operator on (M, Nw) with coefficients in L®Y. We denote by D the Spin® Dirac
operator with coefficients in Ly®" associated with the pull-back of J to Mj. Slnce the I'-action
preserves all the data, F(L®N) N ker DM is identified with (F (L0®N) N ker D) the space of
I'-equivariant elements in F(L0®N ) Nker D. If J is integrable, so is the pull-back of J to My. In
this case, by Proposition 3.14, all %t € F'N %Z” are integrable. So, one can consider 19% for all
N EFN %Z”. By Lemma 4.2 and the above identification, if all 19%’s converge absolutely and
uniformly on any compact set, then they can be thought of as elements of F(L®N ) N ker DM
i.e., holomorphic sections of L®Y indexed by Bgs. (As we noticed in Remark 3.3, F' N %Z” is
identified with Bpg.)

We choose the orientation on M so that (—1)
the Hermitian inner product on F(L®N ) by

n(n—1) n
s (ij)
n:

is a positive volume form, and define

n(n—1) Nw)™?
(5,8 p2(reny = /M<s,s’>L®N(—1) P (Nw)

n!

for s,s' € T(L®N), where (-, -)pen is the Hermitian metric of L®V. For s € T'(L®"Y), we denote
its L2-norm by

1
H3HL2(L®N) = {(s, 3)1;2(L®N)}2
and denote the space of L%-sections of L®N by L?(L®N). Then, we have the following theorem.

Theorem 4.3. Let n: (M,w) — B be a Lagrangian fibration on a complete base B and
(L,VL) — (M,w) a prequantum line bundle. Let J be a compatible integrable almost complex
structure on (M,w) which is invariant along the fiber in the sense of Lemma 3.6 and DM the
associated Spin® Dirac operator on (M, Nw) with coefficients in L®N as above. Assume that 19%
converges absolutely and umformly on any compact set and is square integrable as a section
of L®N for each B € FN+Z". Then, L*(L®N) Nker DM is a Hilbert space and {9m }man L
is a complete orthogonal system of L2 (L®N) Nker DM indexed by the Bohr- Sommerfelzld pomts

Proof. By the definition of ¥m and the assumption of Theorem 4.3, {9m }mE Frizn is an or-
thogonal system of L? (L®N). Suppose that Lh.({¢m }meFm gn) is the subspace "of 12 (L®N)
generated by {¥m }me Prizns namely,

h'({ﬁ%}%eFm%Z" = {Zcz mi

and we denote the closure of Lh.({Jm }meFm zn) in L2(LEY) by Lh.({dn }man sn)- Then,
Lh. ({'1977l}m6Fm zn) is described as

l-h-({ﬁ% }%GFO%Z")

' 1
i F 7"
keN, ¢ elC, — e mN }

m |cm € C, E cm¥Ym converges in L> (L®N) }
N N N
meFN&Zn MeFN&Zn
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In fact, any ¢ = Zme FnLzn sz9m in the right-hand side satisfies

SIED DR 1

MePN%Z™, Im|<k

= 0.
L2(L®N)

lim
k—o0

This implies ¢ is contained by the left-hand side. Conversely, since {m }me Frlzn is a com-
pletely orthogonal system of the subspace Lh.({¥m }me Al Z") then any % > from the subspace
Lh.({¥m }man sn) satisfies

lim =0.
k—o0

N
L2(L®N)

m
o — Z (90 N)L®N 9

2
mepnLzn, m|<k W%”P(L@N)

This implies ¢ is contained by the right-hand side. We show that

N M
L*(L®N) Nker DM = Lh.({92}mepnizn)-

Let s be an element of L? (L®N) Nker DM . We think of s as an element of (F (L0®N) N ker D)F.
By Lemma 3.16, s can be written as in (3.20). Then,

s(z, y) "2 S gy ()™ TV 1 @)= ) o @) ()9}
(v, ) ETx (FN4Z™)
(3.16) Z gvam(N) o2V =T{O(F 7,2)+Npy (F) v}
)EDX(FN4Z")

= Z am (57) D2 gy THOG 2 800 ()

2\3

meFN&Zn yel
m
= E am, (N) Vo (z,y).
ReFN&Z?

(Note that it is well known that the Fourier series of s pointwise converges absolutely. In partic-
ular, the order of terms of the Fourier series of s in interchangeable.) This implies s is contained
by Lh.({¥m }meFm sn)- Conversely, for any s = Zm ernizn c%/ﬂ%/ in l'h'({ﬁ%}%eFm%Z")’
let

s= 2 byt
(v, B)ET X (FN+Zm)

be the Fourier series of s with respect to y;’s. Then, each prw(%) is described by

bnp,(m) = /n s(a,y)e 2V TINe () gy

— A/ — my,
= > Cor ¥ g ()0 2V TN (R) Yy
™ ml epnLzn A

= Z Cort 0 (2, y)e” TV IN0y () v gy
, N o N
™ eFN%Zn

= cran,, 3 (@)-
For each (v,%) €' x (F N %Z”) by the definition of ¥, ay, (m y(z) is a nontrivial solution
of (3.12) for Np,(%). Hence, so is cman,, (z)(x). This 1mphes s satisfies DMs = 0. [
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The condition in Proposition 4.1 (3) also gives a sufficient condition on the square integrability
of 19% as a section of L®N. A proof will be given later in more general case. See Lemma 4.13.

Proposition 4.4. If Y + XY "' X is constant, then 19% is square integrable as a section of L®N.
In particular, by Propositions 4.1 and 4.4, and Theorem 4.3, we obtain the following corollary.

Corollary 4.5. Let m: (M,w) — B be a Lagrangian fibration on a complete base B and
(L,VL) — (M,w) a prequantum line bundle. Let J be a compatible almost complex struc-
ture on (M,w) which is invariant along the fiber in the sense of Lemma 3.6. If J is integrable
and Y + XY 1 X is constant, then {ﬁ%}%eﬂ%zn is a complete orthogonal system of the space
of square integrable holomorphic sections of (L, VL)®N — (M, Nw, J) indexed by the Bohr—
Sommerfeld points.

Let us consider the special case where I is trivial. In this case, F' = R", (L, VL) —(M,w)—B
is (Lo, VLO) — (My,wp) — R™, and 19% is nothing but s,, which is defined by (3.18) by
Proposition 4.1 (2). Then, by Proposition 3.13, we have the following corollary.

Corollary 4.6. Let J be a compatible almost complex structure on (My,wo) which is invari-
ant along the fiber in the sense of Lemma 3.6 and D the associated Spin® Dirac operator
on (Mg, Nwy) with coefficients in Lo®N . Assume that J is integrable and s,y is in L? (L0®N) for
allm € Z"™. Then, L? (L0®N) Nker D is a Hilbert space and {Sy},,czn 15 a complete orthogonal
system of L? (L0®N) Nker D. The latter assumption holds if Y + XY ~'X is constant.

Example 4.7. For Example 2.30, Z = X + /—1Y can be chosen so that ¥ + XY !X is
a constant map and XY ! and Y ! satisfy

ul-C e v wuy,-Clz
-1\ _ —1 . .
(v, = vexvx) [ .
Up - C7 e oo up, - C
u - C e oo wy, - Cl
1\ _ . . 1
v, - N
Upr - C7lz oo up, - Clz
up-Clz oo wy, - Cla
X : +Y + XYV X.
Upy - C Yz oo up, - Clz

In this case, Y + XY 1 X is necessarily I and (2 can be written as
up-C e oo wy, - Clz
0, = : : V(Y XY X))
Up - C 7 e oo up, - C

and the condition (2) in Proposition 3.14 is equivalent to the following condition:

(thlujk)i = (thluik) forall 4,5,k=1,...,n.

J
Assume this condition as well as the condition %vi -Ujv; € Z for all 4,5 = 1,...,n. Then, for

each iy € F'N %Z", 19% is described by

Ym(,y) = Zgve%ﬁ{e(%,7,z)+Np7(%)Ay}’

vel

m
N
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where

TS (- ),

i=1 j>i

x (py1(2)

)%

uil -y

Un1 =Y

Uyl -y

Unl 7Y

Unpn Y
Uln - 7Y

N
Unpn * 7Y

By Proposition 4.1 (3), 19% converges absolutely and uniformly on any compact set.

4.2 The case when Z is constant

Let 7: (M,w) — B be a Lagrangian fibration on a complete n-dimensional B with prequantum
line bundle (L, V%) — (M,w). Then, it is obtained as the quotient of the I' := m(B)-action
on mp: (My,wp) — R™ with prequantum line bundle (Lg, VLO) — (Mp,wp). Suppose that the
I-actions are described by (2.3) and (2.5) as before. Let J be a compatible almost complex
structure on (M,w) and Z € C*(My,S,) be the map corresponding to the pull-back of J
to Mp. A situation in which (2) in Proposition 3.14 holds occurs when Z is a constant map. In
this subsection, we discuss this case in detail. Note that in this case, Ju, is a constant map for
each v € I'. It is obtained by (3.4). Moreover, as a special case of the setting in the previous

subsection, we can obtain the following theorem.

Theorem 4.8.

1 - .
(1) For each §y € F'N {Z", Y can be described as follows:

)

m
N

where

@(%%w

m

N

(z,y) = Zgvezﬂ\/jl{@(%,w,w)-s-pr(%).y},

{(,0T1(x) - %) (414, Ju,y) (prl(:r)

(tAq,Juw)%} — Np, (%) - uy(0).

¥
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(2) For each % € F'N LZ" 19m converges absolutely and uniformly on any compact set.

(3) J is integrable and {¥m }meFm Lyn gIVES @ complete orthogonal system of the space of
square integrable holomorphzc sectwns of (L VL) — (M,Nw, J).
Proof. (1) is obtained from Proposition 4.1 (1). (2) is obtained by the assumption and Proposi-

tion 4.1 (3). The first half of (3) holds since J is covariant constant with respect to the associated
Levi-Civita connection. The other half is obtained by Lemma 4.13 later and Corollary 4.5. N

When Z is constant, the associated Riemannian metric of M is flat. So, by Bieberbach’s
theorem, if M is compact, then M is finitely covered by the 2n-dimensional torus 72". In
particular, ﬁ%’s should be obtained from classical theta functions. So, let us see how ¥m’s
relate with classical theta functions for Example 2.28 with C' = I, in which M itself is Ton,
First, let us briefly recall classical theta functions. For each T' € S, and a,b € Q", the theta
function with rational characteristics is a holomorphic section on the trivial holomorphic line
bundle C™ x C — C™ which is defined by

a T —1(y+a)-T(y+a)+2m/—1(v+a)-(z+b
ﬂ[b](ZT 3 VI Tta) (+a)-(z+b)

’YEZ"

It is well known that o [a

b] (z,T) has the following quasi-periodicity:

o[ mr =eom f] on
9 [Z] (z 4+ Tm,T) = e 27V Tbme=my/=TImTm=2my/~Tmzy [Z] (2,T)

for m € Z". For more details, see [32, Chapter II, Section 1] and [33, Section 2]. Here we need
the case where T' = N2, a = T, and b = 0. In this case, define the 72" = 7™ x Z™-action
on C" x C — C™ by

(1:7) - (zew) 1= (2 4+ N(=Qy +7/),e ™Y N Or82mV =2y
for (7,7') € Z?" and (z,w) € C* x C. Also define the Z?"-action on the trivial complex line
bundle R?" x C — R?" by

(7,7) - (2, y,w) := (z 47,y + 1,2V INTYy) (4.2)

for (v,7) € Z* and (z,y,w) € R* x C. Note that by taking the quotient of the latter
Z"-action of (4.2), we can recover Example 2.28 with C' = I and g, = 1. Let F: R*" — C"

and F': R2" x C — C" x C be the R-linear isomorphism and the bundle isomorphism covering F'
which are defined by

F(z,y) := N(—Qx +y), ﬁ(m,ij) = (N(—Qa: + y)jefﬂ\/lez-wa)'
Then, the direct computation shows the following theorem.
Theorem 4.9.

(1) Jq10F = Fo(Jz), ie, F is aC-linear isomorphism from (RQ", JZ) to the standard
complex vector space (C", J /).
(2) Fis equivariant with respect to the Z*"-actions defined above.

(3) Vm satisfies ﬁoﬁ%(:c,y) =1 [%} (F(x,y),NQ), i.e

_ wv/—1INz-Qx &
Vm(z,y) =e 19[1(\)’] (N(—Qzx +y),NQ).
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4.3 Adiabatic-type limit

In this subsection let us consider a one parameter family { (gt, J t) } £0 of the Riemannian metrics
and the almost complex structures on a Lagrangian fibration so that the fiber shrinks as ¢ goes
to 0o, and investigate the behavior of 19% defined by (4.1) as t goes to oo.

Let Z = X ++/—1Y € C*®(M,,S,) be the map independent of yi,...,y,. Let J = Jz be
the corresponding compatible almost complex structure on (My,wp). For each t > 0, we define
the almost complex structure J* by

o 0 %1 UH
Ju = ( Jay,ay)<t 0 wy

for u = (=J9y,0y) (uf} ) € T(z4)Mo. It is easy to see the following lemma.
Lemma 4.10.
(1) For any t > 0, J' is compatible with wy. The map Z* € C*(My,S,) corresponding to J¢
is described as

1 1 -
Zt — (tX + ﬁy> YUY + XY 'X) <tY - tXY‘1X> Y.

Jt can be also written as

t Uy
(1000 (i)
_ (6.0, Xy-! —Y - XY X\ [,
S\ (Y + XY IX) (Y + XY lx) T —vlx uy)

(2) For any t > 0, let g' be the Riemannian metric corresponding to wo and J'. Then, for
u=(=J0y,8,) (wtl), v=(=J0y,0,) (W) € T(yyyMo, g' can be written by

y-! Y 1X 0
t _ 1)) — t
g (u,v) = WO(UaJ "U) = t((), “H) (_Xy—l Y+XY—1X) (UH>
1, ! -Y'X 0
+ 5(0’ uv) <_Xy—1 Y+XY‘1X> <vv> '

Suppose that a group I' acts on m: (Mg, wg) — R™ and the I'-actions p on R™ and p
on (Mp,wp) are written as in (2.3).

Lemma 4.11. The T'-action p preserves J (hence, g') for allt > 0 if and only if p preserves J.

For J' and ¢' defined as above, the same arguments in Section 3.3 goes well, just by replac-
ing J, g by Jt, gt. For each t > 0, let 9%, be the one defined by (4.1) for J* and g¢*. Let us
investigate the behavior of 9%, as t goes toNinﬁnity. For t > 0, Q! defined by (3.6) for Z! can be
described as N

O = (Y + XY 1X) (X +tv/=1Y)Y L, (4.3)

Let D! be the corresponding Spin® Dirac operator. Then, for a section s of Ly®Y, Dts can be

described as
\/jl n n
Dls = N ZZ; Oy; ®cC {axis + ;(Qt)” (8yjs — 27r\/—1N95j3) }

It is clear that
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Lemma 4.12. For any t > 0, the condition (2) in Proposition 3.14 holds for Qt if and only if
it holds for Q = Q. In particular, Jt is integrable if and only if J is integrable.

Suppose that m: (Mo, Nwp,J) — R™ with prequantum line bundle (LO,VL0)®N — (M,
Nuwy, J) is equipped with an action of a group I" which preserves all the data, and the I'-actions
are described by (2.3) and (2.5) as before. We assume that the I'-action p on R™ is properly
discontinuous and free. Let m: (M, Nw) — B and (L, VL) — (M, Nw) be the Lagrangian
fibration and the prequantum line bundle on it obtained by the quotient of the I'-action. On M,
we define the LP-norm of a section s of L&Y by

1
£ ntn-1) (Nw)™\ »
e R e e

n!

where (-, -);e~ is the Hermitian metric of L®N which is induced from the Hermitian met-
ric (-, ) LoeN of Lo®N. As noticed in Remark 2.26, there exists a positive constant C' such
that (-, -); e~ can be written as (-, -); en = C(-, )¢, where (-, -)c is the standard Hermitian
inner product on C.

For each ¢ > 0 and each point % € F' ﬁ Z” which is integrable, the corresponding ¥4,
defined by (4.1) for Q. We identify F N Z” with Bpg the set of Bohr—Sommerfeld pomts of

m: (M, Nw) — B with Nprequantum line bundle (L, VL) — (M, Nw) and identify 9%, with
the section of (L, V* ) — (M, Nw) which is induced from 19t Then, concerning the LP-norm,
we have the following lemma.

Lemma 4.13. Suppose that Y + XY ' X is constant. Then, as a section of (L,VL)®N —
(M, Nw), the LP-norm of 9% converges and it can be calculated as follows:
N

N\ 2
9% |2, oy = C/det(Y + XY -1X) <pt> .

Proof. Let o(B) be the orientation bundle of B which is defined as the quotient bundle
of the trivial real line bundle R” x R — R™ on the universal cover of B by the I'-action
P (x,r) == (py(), (det Ay)r) for v € I and (z,7) € R" x R. Then, we have a push-forward
map 7, : QF (M) — QF (B, o(B)), where Q°*(B, o(B)) is the de Rham complex twisted by o(B).
B has a natural density which we denote by |dz|. For densities, see [8, Chapter I, Section 7].
Then,

B n(n=1) (Nw)"
- :/thﬁ,%gm(_l) ) no;)

—/Bﬂ* <<19t I >§®N( 1)’%”(1\77:)”)

—CN"Z/ —pN7t(p, 1 (2)—2) (Y+XY LX) (p, 1 (2)— ) |dz|. (4.4)
~yel

By changing the coordinates as ' = p,-1(z),

44 CNnZ/ prmt ) (Y+Xy 1X)~! |d33‘
yerl’

_ CNn/ eprfrt(x 7)Y +XY~ Ix)—t |d.%‘ ‘ (45>



Adiabatic Limit, Theta Function, and Geometric Quantization 35

Since Y + XY !X is positive definite, symmetric, there exists P € O(n) such that

Al
Y+ Xy lx="tp P.
An

Then, we define a positive definite symmetric matrix vY + XY ~1X by

VA1
VY + Xy-1x .=tp P,
o

and put 7 := \/(Y + XY‘lX)_l(x’ — ). Then,

(4.5) = Oy/det(Y + XY-LX)N" / PN g

n

n oo
= C\/det(Y +XYV1X)N' ] / o PN
=17 ">

= C\/det (Y + XY-1X)N" <\/plz>n m

We define the section d= of (L, VL)®N|,F71 my by
N (N)

L 1 21/ —1m-
om (y) == ok Y. (4.6)

By Proposition 3.2, 5% is a covariant constant section of (L, VL)®N]7F_1(%). Let T*M Dbe the

cotangent bundle along the fiber of 7. On (A"TFM) @ 7*o(B)*, there exists a natural section,
i.e., a density along the fiber of 7, say |dy|, which satisfies fﬂ_l(x)|dy| = 1 on each fiber of .
Then, we obtain the following theorem.

Theorem 4.14. Suppose that Y + XY 1 X is constant. Then, the section
Vi
N
i
195 1| 2 o)

converges to a delta-function section supported on the fiber W_l(%) ast goes to oo in the following
sense: for any L?-section s of L&,

I
lim (s, —/ (s,0m)ren|dy|.
t—)oo( |29%HL1(L®N)>L2(L®N) 71——1(%) N

N

Proof. We denote by 3 the pull-back of s to Ly®Y — M. Since § is I'-equivariant, the Fourier
series of s can be written as in (3.20). Then, by using Proposition 4.1 (1),

I
) t
19% HLl(L®N) L2(L®N)

-, < o > (et )
M ’ |/l9t%HL1(L®N) LON n'
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19t e n
A (G e B
B Hﬁm HLI (LeN) [ ron v

CN™

19% 1|1 )

XZ/ (Pt (@) 2TV T G R 1 (D)o, 1 D) |4 (47)
yel’

Here, we remark that we can interchange the operations to take infinite sums and integrals by
Lemma A.2. By putting 2’ = p,-1(z), we have

(4 7) & Z/ am(l,l)e—%r\/—ilz:?:l Gin(% ..... "’3\, 1 733;7 . 7L)|dx |
Hﬁm HLl (L®N) yer 1(F)

:tC‘Nn/ am(x’)e*%\/jlzyzlG%(%w,mf\,’l Lo ]dx|
= C‘Nn/ am(x/)e%r\/jZ ReG:, M1 .... m§v1’$l, )
Hﬁt%HLl(L@N) n

% o~ TN =) (Y+XY 1 X) " (@ =) |da|. (4.8)

We put
F(@) 1= am(a’)e?™Y T X Re G (Fh s =5 @)

and 7 := \/(Y + XY*lX)_1 (¢/ — %). By using Lemma 4.13 for p = 1, (4.8) can be written as
follows:

CN"
19% 111 vy Jre

= iy ¢ Xy X) [ (VXY TR 4 e

9% [ 1 ey
= (Nt)? /n f (\/Y +XY1XT 4 %) o™V g . (4.9)

It is well known that lim¢ oo (4.9) = f (%) = am (%). On the other hand, by using the
expression

(4 8) f(x/)e—ﬂNt(w B)(Y+XY~1X)~Y( |dx ‘

I

§= Z aNﬂ'y(m/)( ) 27r\/7Np’Y(mW) ’

N
(' )€F><(Fﬂ VAD

the right-hand side can be computed as

/,r_1( <375%>L®N|dy’ = /T" (3, 5%>L0®N’dy‘

_ (™ 21/ =1(Npy (%) —m)y
- > Npy () (N)/ne o [dyl.
(%%’)erx(Fm%Zn)

The integral [, ezﬂmw"’”(mﬁ)_m)'y\dm vanishes unless pw(mwl) = % Since both le and % lie
in the fundamental domain F, this implies ¥ = ¢ and m’ = m, and in this case,

/ 2PV TN (50)=m)y |y — 1.

Thus, fﬂ_l(%)(s, om)pon|dy| = am (%) . This proves the theorem. [
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5 The non-integrable case

In this section, let us consider the case where the almost complex structure is not integrable. We
still use the same notations introduced in Section 3. By Lemma 3.11, the equation (3.12) has
no smooth solution for 5z € F'N %Z” if and only if m is not integrable. For such %, instead of
(3.12), let us consider the following equation which is obtained by replacing € with its value Qm

N
at %7 in (3.12)

8xlam
0= : + 21V —1amQn (m — Nz). (5.1)

O, O
The equation (5.1) has a solution of the form

We put the initial condition @,,(%;) = 1 on the above ay,, and for each v € T, define 5va(%) in
such a way that it satisfies (3.19).

Lemma 5.1. EL’NPW(%) satisfies the following equality:

O, anp, (3 (%)
~ m
o= [ )i s (5 () - )
axnaNp,Y(ﬂ)(l')
- m
2 g ) (0)1 45 0 = )45 (Vo () — V). 52

Proof. By the same calculation as in the proof of Lemma 3.17, we have

O AN p, () (py ()
‘A, :
Oz AN p, () (P(2))
g -1 t m
= 2wy~ Ta,, (z)(py (2) (Qu A" + 1 (Jus),) (va (N) - va(:n)).
(5.2) can be obtained from this equation and (3.24). [

By using ay, (m)’s, we define Jm in the same manner as Jm, i.e.,
PN N N

Z aNP'y ) 271-\/7va( v

m
N (%)
vel

5% converges absolutely and uniformly on any compact set and can be written as 5% =
> er ;57 o sy, 0 py—1, where 57, is the section defined by

S;n(l',y) — eﬂ'\/le(acf )-Q (xf—)+27r\/7my

In particular, 19771 defines an LP-section of L®N — M. Moreover, {19 }m cFnLzn
thogonal system of the space of L2-sections of L&Y . These can be proved by the same way as
Proposition 4.1 and Lemma 4.13.

is an or-
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Next let us consider the one parameter family of Jt and g¢' defined in Section 4.3. Then,
corresponding to J' and ¢!, we can obtain 9%, , which can be explicitly described as
N

5% (z,y) = Z gye%m{@(%v%w)-Fpr(%)y}7
~ver

where
0 () = (a1 2) 0 (o0 2)

m

+N {gw(pv’l(x)) P (N) . uV(pV?l(x))}

and Qm is the value of Q¢ given in (4.3) at 5. Then, 19 has the following property. The proof
is same as Theorem 4.14.

Theorem 5.2. For each 37 € F'N %Z”, the section
o,
- N
9% 122 o)

converges to a delta-function section supported on the fiber W_l(%) ast goes to oo in the following
sense: for any L?-section s of L&,

oy
N :/ <375%>L®N\dy|.

S, -
Hﬁt%HLl(L@N) L2(LEN) ()

11m
t—o0

Finally, let us investigate the behavior of Dt{;tm as t goes to oo. thgtm is a section of
(TM,J") @c L®N, and (TM, J*) @c L?N admits a Hermitian metric (-, '>(TM$t)®CL®N induced
by the one parameter version of (3.9) of (T'M, J') and the Hermitian metric of L. In terms of
this Hermitian metric, the L?-norm is defined as

~ nn=1) (Nw)"
e N

n!

In general, 5 is no longer a solution of 0 = D!s, but we can show that 19tm approximates the
solution of this equation in the following sense:

Theorem 5.3.

lim HD 79m

t—o00

=0.

L2((TM,Jt)@c L®N)

Proof. For n =1, it is clear that all m € Z are integrable. Thus, it is sufficient to prove the
theorem for n > 2. By the definition of 19m and (5.2), D%, can be written as
N

Vo1& ~ n ~ ~
D'ify = = Y1 370y @ § Ol + ()i (0, 0% — 27V=1Nz;d% )

1 -
= - \/; Zayi ®c Z {a"”iaNPw(%)(x)

+2my/ Ty, (@) (2 (Npy (5) = Na)) Jerm/ Ve
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= —2%28 ®c Z(INP( ( (m,v,x t))l 2™V=INpy ()

where

B <%7~”> =TATH (O -9, () <% - Pv—l(ﬂf)) :

Then,

<Dt19t D) (rar,mysct

)2V "IN ()0 G 21y "INy ()
>0 D (e, (@e VI Gy, o (@)e 2B o
Y1,72€1 41,82

N ~ - ~ T — )
= @05 Y (anp, @)V EV Gy, (@) TN

Y1,72€l

—1 m
% B <N,71,a: t) (Y + XY 'X)_B (N,’yg,x,t).
For each z € F and u € C", define the norm of u with respect to (Y + XYﬁlX)m by
"u“%Y—f—XY*lX)m =u- (Y + XY_lX)xﬂ

By (3.5), for each v € T, |lu||? (v+xy-1x), Satisfies

2
HtAVu|’(Y+XY*1X)m - ”“”?YJrXY’lX)m(x)'

By using this norm, we obtain

D0k [ aqra syseren)

— (2m)? C Nt / e—27rNt(p,yfl(a))—%).(y+XY71X)—%1(p’y7l(x)_%)
F

vyer
1 m
N t) : (Y+XY X)mB (N,fy,a:,t)|dm\
o C N1 /G%Nt(pyl(x)m-(wXY-IX)ﬁ(pw(z)7;)
F

><B<

= (2m)

vel’

<[8 (579 iy, 19

— (27)? CN7t1 / e—27rNt(p’Y,1 (m)—%).(y+Xy—lX)—%l(p771 (0)-m)
F

yer

t t ﬁ — :
x H (Q B Qp'y_l( )) (N p771 (:U)) H(Y—’—XY1X)/J’YI(‘L) ’dx|

CN7tl / 672th(z’f%)-(Y+XY*1X)’%1(m’f%)
py—1(F)

— (2m)?

yel’

t oty (M ‘2
XH(Q% %) <N $> (Y+XY-1X),

|da’| (2’ = pyr(2))
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40
n+1 /I_m - - /_m
t Ot mo_ ‘2 !
X H(Q% Q) (N ZL’) VX130, |da’].
Since Q¢ can be described as (4.3),
t Ot mo_ ’2
H(Q% Q) <N a:) (Y+XY~1X),/
_ o (T
= H(RG(QN L )) <N x) ‘(Y-',-XY—lX)I/
2 o m_ ?
+1 H(Im(Q% ) (N x) ’(Y+XY1X)I/ '
We put
"o o (™A
R(x") := H(RG(QN 2)) (N x) ’(Y+XY1X)I/ ’
N v (™A
I(z") = H(Im(QN L )) (N x) ‘(Y+XY1X)I/ ’

By changing coordinates as

7= \/(Y +xy1x) (-5,

|
N

2 .
HLQ((TMJt)@CL) can be written by

i 2
1% 12 (ras,styecry

= 22—%7TQCN%+1\/det(Y +XY-LX)

m
N

% {tlg /n R <\/(Y —I—XY_IX)%T-F %) (QNt)%e*QTrNt||T||2|dT’

+173 /n 1(,/(v +XY-1X)

It is well known that

m
N

) (2Nt)3e_2”Nt|72dT|} .

m 2 —2rNH|72 | 4| — (T):
%T+N)(2Nt)2e jar| =& () =0,

r+ ) NV ar = 1 (1) = o.

t—o00

l | R (\/ (¥ + Xy 1X)

m
t—o0 N

lim [ 1 (/(V+XYX)
Rn

Since n > 2, this proves Theorem 5.2.

Example 5.4. For Example 2.29, let us consider the compatible almost complex structure

associated with

1
0 O 2 0
7 = +/—1 | #tt )
(0 5'31> < 0 1)

The corresponding {2 is

s = (V(? a1 +0\/—T) '
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This Z does not satisfies (2) in Proposition 3.14, nor the condition (3.15) for any m € Z2. In
fact, for any m € Z?%, ((0x,Q)(m — Nz))2 = mg — Nxy while ((02,Q)(m — Nz)); = 0. In this
case, ¥4, can be written as

N

5% Z 9~ eXp{QWFN[ {t\/7<1:1 v — %)2
yEZ?
(5 v ) ()
+ (w2 — 72){%71 (2 +72) — (% + 72)72}} }ez’rV—T(m*M)'y.

Example 5.5. In the case, where n = 2 of Example 2.31, we can take the compatible almost
complex structure associated with

1 </\2x§ Ax%) n V-1 <(1 +A%)a3 +1 )\x2>

A3 a9 z3+1 A9 1

i+l

The corresponding {2 is

%= (s was T4 1))

In this case, 0,012 = —v/—1X and 9., Q9 = 0. So, Z satisfies (2) in Proposition 3.14 if and
only if A = 0, which is the special case of Example 4.7. Equivalently, Z does not satisfy the
condition (3.15) for any m € Z? unless A = 0. In fact, for any m € Z?, ((9,,Q)(m — Nx))2 = 0
while ((0,,Q)(m — Nz)); = —v/—1A(mg — Nz2). In this case, 19% can be written as

’l9t (x y) = Z97627“/?1@(%’%7”)e27“/jl{(m1+’72’\m2+N’Yl)y1+(m2+nyg)y2}

%
yerl’
where
tv—1
S) (%,%Cﬂ) =N [2 {561 — 71— 2Mx2 — 72) — %}
mo mi ma
—tv—lkﬁ {371 — 71— Y2eMx2 — 72) — W} ($2 — Y2 — W)

1 [mg o m3 mo\ 2
StV (N2 1) ¢ (22— — 52
+2 { N + ()\ N2 + T Y2 N

+%72(372 —¥2) (w2 +72) — (% + 72) Y2 (2 — 72)] .

A Fourier series

Let m: (M,w) — B be a Lagrangian fibration on a complete n-dimensional B with prequan-
tum line bundle (L, V) — (M,w). Then, it is obtained as the quotient of the i (B)-action
on mp: (Mp,wp) — R™ with prequantum line bundle (LO,VLO) — (Mp,wp). We take and fix
a fundamental domain F' of the 7;(B)-action on R™ as before. Let N € N be a positive integer
and s a smooth section of L®N. We identify s with a m; (B)-equivariant section of Lo®". Then,
for each x € R", s(x,-) can be expressed as the Fourier series

s(zy) = D am(@)et™ I (A1)

mezZn"
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in L2 (L0®N|{I}XT7L), where

() 1= / s(z,y)e Ty

for m € Z™. Then, we have the following lemma.

Lemma A.1. For j =1,...,n, the partial derivatives 0,,s and 0y, s have the following Fourier
series:
0z;8(z,y) = Z (%cjam(l‘)e%ﬁm'y,
meZ™
Oy;s(w,y) = Z QW\/—lmjam(ac)e%‘/jlm'y
mezZ”

in L* (Lo®N |y )-

Proof. Suppose that d,;s has the following Fourier series with respect to y;’s:

O, 5(x,y) = Y b(a)e™7Im,

mezZmn

Then, b, (z) is computed by
bla) = [ Dustape Ty =, [ stye Iy = 0, 00(a).

This proves the first equality. Suppose that d,,s has the following Fourier series with respect
to y;’s:

Byjs(x,y) = Z cm(x)e%ﬁm'y.

mezZm"

Then, ¢, (z) is computed by

em(2) = . 0y, s(z, y)e 2™V Imvdy

= /Tn_l (/Sl 8yjs(x,y)e2wﬁm-ydyj> dyy ---dy; - - dyy,
= [ (st
_ /51 S(ZE,y)ayje_Qﬂ'\/jlmydyj) dyy -+ dy; - dyy
- /Tn—l (2w¢j1mj /Sl s(x,y)e%ﬁm-ydyj) dy; - ~-d§/j e dyn

— 2Wﬁmj / s(z, y)e_%‘/?lm'ydy
T’Il
=2V —1mjan(x).
This proves the second equality. |

Lemma A.2. If s is in L? (L®N), then the following formulae hold:

s — Z am(x)e%\/?lm'y

Im|<k

lim
k—o0

=0,

L2(Lo®N|pyrn)
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Isl22emy = 3 Nam(@)IBary (A.2)

mezLm™
where |m| :=mq + -+ -+ my, for m = (mq,...,my,) € Z". Namely, the right-hand side of (A.1)
also converges to s in L? (L0®N|F><Tn).

Proof. For each z € R", we define s, € L? (L0®N|{x}xTn) by sz(y) := s(z,y). Then, (A.1) im-
plies

kli_}m Sp — Z am(:v)ezmﬁm'y =0, (A.3)
> |m|<k L2(Lo®N| ()
and s, satisfies
HSQEH%2(LO®N‘{,¢}><T71) = Z |CLm(ZL‘)|2 (A4)

mezZm™

By using (A.4) and the monotone convergence theorem, (A.2) can be obtained as follows:

R R T i ] (TG

n! n!
= [l Manr—/EJ% ?Jd
meZ"
_ ﬂ% 2da = 37 llan(@) 20
meZ" mezZ"

Next, let us prove that
Z am(l,)e%r\/jlm-y
mezm
converges with respect to the norm of L? (L0®N|F><Tn). For each k € N, we put

s(@y) =Y am(z)e™ My,

Im|<k

To prove it, it is sufficient to show {s;}xen is a Cauchy sequence in L2 (LO®N|FXTn). For k <
in N,

2

U (l‘)e%r\/jlm'y _ Z am(x)GQWﬁm~y

5= 510 1,0y = |
|m|<l Im|<k

L2(Lo®N|pyn)

2
]S anpernn
k<|m|<! L2(Lo®N | pxrn)
/'mem
ke<|m|<l
'Zmnha = 3 am@) B | (A.5)
|m|<k |m|<I

Since s is square integrable, as we showed above, > /. Ham(ﬂj)”%?(z«“) converges to ||s||z2(zen).
In particular, the sequence { Z|m|§k”am(x)”%2(p)}k@\1 is a Cauchy sequence. Thus, by (A.5)

k;_ﬂllol}l—}oo”Sl - skHLQ(Lo@NlFXT”) =0.

Let 5 € L? (L0®N|F><Tn) be the limit of {sj}ren. Then, {si}reny pointwise converges to 5. But,
by (A.3), {sk}ren also pointwise converges to s. This implies 5 = s. [



44 T. Yoshida

Remark A.3. By the continuity of the inner product of the Hilbert space, Lemma A.2 enable
us to interchange operations to take limits and integrals for L?-sections on L&V,

B Proof of Proposition 3.14

If all m € Z" are integrable, then by putting m = 0, we have ((0:,9).7); = ((92,Q)27);.
By substituting this to (3.15), we can see the condition ((0.,Q)sm); = ((0z,;€)zm); holds for
all m € Z™. In particular, by substituting m = e; to this condition for each £ = 1,...,n, we
can obtain (2). (2) = (1) is trivial.

We show (2) < (3). (2) is equivalent to the following two conditions:

(v + X¥71) 0, (X)) = (v + X7 7X) o, (X)), (B.1)
0o, (Y + XY TIX) 1 = 0, (V + XV IX) ! (B.2)
fori,j,k=1,...,n. Fori=1,...,2n, we set
Tl - Thy
L= )
i - TH,

where Ffj is the Christoffel symbol. Then, (3) is equivalent to
0=0;J +1;J— JIy, 1=1,...,2n,

where

Oz i=1,...,n,
0; = _
Oyi_ry t=mn+1,...,2n.

It is also equivalent to the following conditions:

Oy (XY*l)u o O, (XY*l)u
Xy : :
0, (XYY, o 2 (XYY,
Oy (Y_l)li = Oy (Y_l)li O, (Y_l)u' Oz, (Y_l)m'
- Y+ XY 'X) :
Oy (Y_l)m' = Oz, (Y_l)u D, (Y_l)m; O, (Y_l)m'
Oy (XY*l)u O, (Xyil)lz'
= : : Xy (B.3)
Oy (XY 1) O, (XY 1)
Oy (XY_I)M e O, (XY_I)U
y! : :
0., (XYY, e a, (YY),
Oy (Yﬁl)u — O, (Yﬁl)u e O, (Yﬁl)li — Oy (Yﬁl)m‘
~Y X :
0 (Y1) 5 = 0 (Y1) O (V1) = 000 (V1) o,
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amn (Y_l) - aa:1 (Y_l)

17 ni

, — O, (Y1)

nr

Oy (Y_l)m‘ — Oz, (Y_l)u O, (Y_l)
Oz (Y_lX)il v O (Y_lX)m
+ Y_l, (B'4)
837% (YilX)il T 6$n (YilX)in
Oz (Y71X>¢1 v O (YilX)m

ng

(Y + XY 'X) : :
Oz, (Y‘lX)“ o On, (Y_IX)m
Oz (XY_l)u v O, (XY_l)u
— : : (Y + XY 'X), (B.5)
O, (XY*l)m' - O, (XY*l)m‘
Or,y (YﬁlX)ﬂ v O (YilX)m
yolx : :
Oz, (Y_1X>i1 o O, (Y_IX)m
O (Y7, =05 (Y1)

10 1

Oy (Yﬁl)m‘ — Oz, (Y71)1z‘ O, (Yﬁl)m — Ox, (Yﬁl)m‘
Oz, (YilX)il O (YilX)z‘n
- : : YlX, (B.6)
0., (V1X),,
) Y+XY 1X) e O, (Y HXYTIX)
Xy ( : + (Y + XY 'X)
Oy (Y + Xy~ 'X),, 0 O, (Y +XYTIX)

961 Y X P Oy (XY?l)il = Oy, (YilX)u + Oy (XY*l)m

0y (VLX) 00, (XY 1) e = 00, (V7IX) 4 00 (XYY,
0oy (Y + XY 'X), - O, (Y+XY X)),
— : ; Xy, (B.7)
Oy (Y + XY—lX)m. e O, (Y +XYTIX)
O (Y + XY IX) . oo 0, Y+ XYTIX)
y-! : :
O, (Y + XYIX) O, (Y + XY IX)
— 0, (Y_IX) T O, (XY_l)il - =0, (Y_IX) 1T Oy (XY_l)m
+Y X : :
— O, (Y_IX)m' + Ox,, (XY_l)il =g, (Y_lX)m' + Or,, (Xy_l)m
—Or, (Y_lX)u + O, (Xy_l)ﬂ © =0, (Y_lX)u + O,y (XY_l)m
=— : : xy!
0, (YT'X) 4 0, (XY 1) e =00, (YTIX) 400, (XY,
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0 (Y + XYTIX), -+ 0y (Y + XY IX)

+ : : vy (B.8)
Op, (Y + XY TIX), 0 oo O, (Y + XY TIX)
Oy (Y + XYIX), oo 0n (Y +XYIX),
(Y + XY 'X) : :
O, (Y +XY'X),, -+ 0p, (Y + XY 'X)
O (Y + XY7IX) . 0 0, (Y +XYIX) .
= : : (Y + XY 'X), (B.9)
Op, (Y + XY1X) O, (Y + XY7IX)

O (Y +XYIX). oo 0, (Y + XY IX)

n n

n
Yx : :
8mn(Y+XY*1X)i1 8%(Y+XY*1X)Z.”
— 0z, (Yle) T O, (XY*l)u 0 = O, (YilX)lz‘ + O,y (XYil)m

0, (YTIX) 40, (XY 1) | oo =00, (YTIX) 4 0s, (XY 1)
x (Y + XY 'X)
Oy (Y +XYIX) o 0y (Y + XY IX)

in

n
+ : : Yy lX. (B.10)
O, (Y +XYTIX), oo 0, Y+ XY X)),

for i = 1,...,n. It is easy to see that (B.6) and (B.10) are obtained by transposing (B.3)
and (B.7), respectively. First, we show that (B.1) is equivalent to (B.5). In fact, (B.1) implies

Oz, (XY_l)ug e Oy (XY—l)nk
: : Y +xy'x)"!

O, (XYY), o 0, (XY,

n n

is symmetric for K = 1,...,n. Since X, Y is symmetric, this implies (B.5). Next, we show (B.9)
is equivalent to (B.2). (B.9) is equivalent to

0n (Y + XYTIX), - 0 (Y +XYTIX)
: : Y +xv'x)"!
O, (Y + XY‘IX)“ v Oy (Y + XY‘lX)m
Oy (Y +XY7IX) 0 o 0, (Y +XYTIX)
= (Y +x77'x)" : : (B.11)
O (Y + XY IX) O, (Y + XY 'X)
By computing the (j, k)-components of the both sides of (B.11), we obtain
S (0, (V + XY TIX) (Y + XY TIX) = D0 (00 (Y 4 XY TIX) ) (Y + XY X)),
=1 =1
for i,5,k =1,...,n. Here, we used

0=, (Y + XY IX) (Y + XY~ 'x) 7))

J

= (0, (Y + XY X)) (Y + XY 'X) 7 4+ (Y + XY 1 X) 0, (Y + XY IX) )

J
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and so on. Thus,

n n
0o, (Y + XY 71X) 0 =3 0, (Y + XY IX) ) (Y + XY LX) (Y + XY TIX)
=1 =1

n

=3 3 (@ (V- XYTIX) (Y XYTIX) (Y + XY TIX)
i=1 [=1
=0y, (Y + XY~ 1)()

3

This implies (B.2). In particular, this means (3) = (2).
We show (B.3), (B.4), (B.7), and (B.8) are obtained from (2). To show (B.7), it is sufficient
to show

O (Y + XYIX), - 8, (Y + XY 1X) .
0= (Y + Xy 'X) 'xy! - '

Oy (Y + XY1X) (¥ + Xyix)

Oz,
Oy (Y_IX)M o O, (Y_IX)M
Oz (Y_lX)m' e O, (Y_lX)m'
Oy (Y +XY7IX) . oo 0, (Y +XYIX)
—(Y+xyix)™ ; : Xy~
O (Y +XYIX) . oo 0, (Y +XYIX)
Oay (XY_I)il Oy (XY_I)m
+ : : : (B.12)
Oz, (XY_l)u o On, (XY_I)m

Since € is symmetric, so is its real part Re () = (Y + XYle)leYfl. By taking the real part
of (2), we also have

o, (V4 XY X)) TIXY ) =0, (Y + XY X)XV,

By using these as well as (B.1) and (B.2), the (j, k)-component of the first two terms of the
right-hand side of (B.12) can be computed as

SV +XYIX) XY ) 0, (Y + XY X)), - 0 (VIX)
l
- Z YOIX(Y 4+ XY X)) 0, (Y + XY TIX), = 0, (VX))
= 0, ( Z(Y X+ xYTX) (Y + XY, )

=S (IR Y)Y, 0 (1),

:_Z L (VTIX (Y 4+ XY TIX) T ) (V 4 XYY,

Sl (¥ + XY IX) XYY XX,
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On the other hand, the (j, k)-component of the last two terms of the right-hand side of (B.12)
can be computed as

=V XY X)L (0, (Vo XYTIX) ) (XYY, 0 (XYY,
m,l
=2 (0, (Y + XYTIX) ) (Y XY TIX) (XY ) 0 (XYY
m,l
= S XYL, (0, (V4 XY LX) (XY
m,l
+I (VXY TIX) (Y + XYTIX) 0, (XYY

m,l

= Z(aﬂﬁj (Y + XY—1X)71XY_1)M) (Y + XY_lX)lz"

k

This proves (B.12). We show (B.8). We put

Oy (Y +XYIX) 0 oo 00, (Y +XYIX)
W .= : :
(Y +Xy'Xx)

nt

Oy (Y + XY—IX) 4

nt

Or

n

By (B.7) and (B.9), we obtain

n

— O, (Y_lX) T Oy (XY_I)ﬂ o =0, (Y_IX) ut e, (XY_I)

<00 (Y TX), 00 (XY ) <0 (VLX) 0, (XY
= (Y + XY ' X)) WXY T - (Y + XY X)Xy W

in

and
Y+ XY 'X)'W =w(Y + XY 'X).
In order to show (B.8), it is sufficient to check
0=Y 'W4+Y X (Y + Xy 'X) " 'WXxYy T -y IX(Y + XY IX) XYy 'w
+ (Y +xYy ' x) T 'wxy i xy !
(Y + XY X)Xy twxy T -ty L (B.13)
By using above equalities, the right-hand side of (B.13) can be computed as
YW -y X (Y + XY OLX) XY I R (Y XY IX) T WX Y XYy -ty
=YW - (Y + XY X)) XY TIXY T 4+ (Y + XY LX) T WX Y Xy !
— (Y + XY X)TW(Y + XY IX)y !
=YW - (Y + XY TIX) XY TIXY T 4+ (Y + XY LX) T WX Y XY !
— (Y +XYTIX) W (Y XY X)) T w XY iy
=Y 'W —{(Y + XY ' X) T XY IX 4 (Y + XY OIX) Yy iw =0

This proves (B.8).
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We show (B.3). To see this, we show
O, (XY_l)u o O, (XY_l)u
0= (Y +XY X)Xy ! : :
Ory (XY*I)m. s Oy, (XY*I)m.
Oy (Y1), = 00 (Y1), O, (Y1) 3y = 0 (Y7,
0 (Y1), = 0 (Y 1)y, 0 (Y 1), = 0 (),
Oy (XY_l)u e O, (XY_l)u
—(Y+xyx)™ : : Xy~ (B.14)
Oy (XY”)m oo Og, (XYfl)m

The (7, k)-component of the right-hand side of (B.14) is

SV + XY IX) XY 00, (XY ) = 00 Y 4 00, Y

Tk~ 51
l

S XY X)L, (v, L(xy ),

l,m
= (v + XY X)) XY 0, (XY ) = 00 Y 4 00 V!
SV +XY7X), 0,

lym

(XY, (XY,

J

— (v + XY—lx)*1 {00, (Y + XY ' X)Y ) = 0, (XY ) XY 1Y)

@xk Ji + ax] Ykz ! Z(Y + XY_lX)r_n} (XY_I)lk:ax'

J
lym

= (Y + XY 71X) 7 (0 (Y + XYTIX))Y L 4 axky—l)
— (Y + XY 1X) 0, (XY )XY ) -0, Y,
S (v +xy X)Xy L0, (XYY

Jt

+ 8% Ykz !
mi

= (Y + XY 'X) (0, (Y + Xy X))y
- ((Y + XY_IX)_laxk (XY_I)XY_I)jz’ + aijk;l

S (v +xy X)Xy, 8, (XYY

= (Y + XY 'X) (0, (Y + Xy'x)y ),

— (Vv + XY71X) 0, (XY )XY )

+ (05, Y = (Y + XY TIX)TIXY 19, (XYY,
= (= (0, (Y + XY X) (Y + XY IX)Y )

- (v +xv7'X) k

o, (Xr )X

+ (0, = (Y + XY TIX) T XY 1, (XYY,

== 0, (Y + XV IX) (Y + XYY,
l

(xy—h
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= (XY T, (X)) Xy
l
— — -1 - -
+ (0, Y ' = (Y +XY'X) T XY o, (XY ),

=3 0, (Y + XY X)) (Y + XY IX)Y ),
l

(v + xYx) o () xv ),
+ (0, = (Y + XY TIX) T XY 1, (XYY,
= (0, (Y + XY 'X) ) (Y + XY ' X))V )
(v xyx) o, (XY Xy,
+ (0, Y = (Y + XY ' X) T XY g, (XY )
= (v + XY 1X) 0, (v 4 XY X))V,
(v + xyx) o (X,
+ (0, L= (Y + XY IX) T XY 1, (XYY,
= (Y + XY 71X) (0, (Y + XY TIX))Y L4 (Y + XY LX) 9, YY)
—((v+xY7'X) "o, (XY )XY + XY 1o, (XY )})

ki

ki

ki

= (Y + XY 1X) 70, (Y + XY LX)y ™) = 9, (XY IXY~1)}) =0,
This proves (B.3).
Finally, we show (B.4). We put
Oz, (XY_l)u v Oy (XY_l)u
V= z z
Do (XYY) e B, (XYY
By (B.3) and (B.5), we obtain
axl (Y_l)li axl (Y_l)li 835” (Y_l)l’i 8371 (Y_l)ni
e (V1) = 00 (V1) 0, () = 0 (YY),
= (Y + XY ' X) XYWV - (Y + XY IX) v Xy !
and
Y+ XY 'X)'V=V(y+ Xy 'X).
In order to show (B.4), it is sufficient to check
0=Y W -y X (Y + XY 'X) ' XY W+ Y IX(Y + XY X)) lvxy !
+ Y+ XY X) T VXY T XY T - (Y 4+ XY IX) T XY v Xy !
—tyy-h (B.15)

Then, (B.15) can be checked in the same way as (B.13).
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