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Abstract. The Laplace–Beltrami operator on (the surface of) a triaxial ellipsoid admits
a sequence of real eigenvalues diverging to plus infinity. By introducing ellipsoidal co-
ordinates, this eigenvalue problem for a partial differential operator is reduced to a two-
parameter regular Sturm–Liouville problem involving ordinary differential operators. This
two-parameter eigenvalue problem has two families of eigencurves whose intersection points
determine the eigenvalues of the Laplace–Beltrami operator. Eigenvalues are approximated
numerically through eigenvalues of generalized matrix eigenvalue problems. Ellipsoids close
to spheres are studied employing Lamé polynomials.

Key words: Laplace–Beltrami operator; triaxial ellipsoid; two-parameter Sturm–Liouville
problem; generalized matrix eigenvalue problem; eigencurves

2020 Mathematics Subject Classification: 34B30; 34L15

1 Introduction

In 1839, Lamé [16] showed that the Laplace equation

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0

after transformation to ellipsoidal coordinates α, β, γ [1, Section 1.6] can be solved by the
method of separation of variables. The orthogonal coordinate surfaces of ellipsoidal coordinates
are ellipsoids, hyperboloids of one sheet and hyperboloids of two sheets; all confocal. Lamé
obtained solutions of product form

u(x, y, z) = w1(α)w2(β)w3(γ),

where w1, w2, w3 all satisfy the Lamé differential equation

d2w

dt2
+
(
h− n(n+ 1)k2 sn2(t, k)

)
w = 0. (1.1)

This equation contains the Jacobian elliptic function sn(t, k) with modulus k ∈ (0, 1) and two
separation constants h and n(n + 1). If n = 0, 1, 2, . . . , then equation (1.1) admits Lamé
polynomial solutions [1, Chapter IX]. Lamé polynomials are nontrivial solutions of (1.1) that
are polynomials in sn(t, k), cn(t, k) and dn(t, k). For given n ∈ N0, there are 2n + 1 special
values of h such that (1.1) admits a Lamé polynomial solution. If we choose one of these special
solutions for w1, w2, w3, then u becomes a harmonic polynomial in the variables x, y, z also
known as an ellipsoidal harmonic. For the theory of ellipsoidal harmonics, we refer to [6, 11, 12].

We also mention Mathieu’s work [18] on the vibrating elliptic membrane; see also [19, Sec-
tion 4.31] and [22, p. 4]. The eigenvalues λ are determined from the equation −∆u = λu for the
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two-dimensional Laplace operator ∆ under Dirichlet boundary conditions on an ellipse. This
problem can be solved by the method of separation of variables after transformation to planar
elliptic coordinates. We obtain two Mathieu equations coupled by the eigenvalue parameter λ
and an additional separation parameter.

The goal of this paper is to demonstrate that following the method used in these examples
we can find all eigenvalues and eigenfunctions of the Laplace–Beltrami operator ∆E on the
ellipsoid E defined by

x2

a2
+
y2

b2
+
z2

c2
= 1, a > b > c > 0. (1.2)

Here we consider the ellipsoid E as a two-dimensional analytic Riemannian manifold [14]. We
show that the eigenvalue equation

−∆Eu = λu (1.3)

after transformation to ellipsoidal coordinates (now denoted by s, t) can be solved by the method
of separation of variables. We find eigenfunctions of product form

u = v(s)w(t). (1.4)

The function w is now a solution of the differential equation

d

dt

(
1

q(t)

dw

dt

)
+ q(t)

(
h− λk2 sn2(t, k)

)
w = 0, (1.5)

where q(t) :=
(
a2 cn2(t, k) + b2 sn2(t, k)

)1/2
, and v satisfies a similar equation. We notice that

equation (1.5) reduces to Lamé’s equation (1.1) when a = b = 1 and λ = n(n + 1). We
obtain a two-parameter Sturm–Liouville eigenvalue problem involving two ordinary differential
equations that is fully coupled. This means that the eigenvalue parameter λ and the separation
parameter h appear in both differential equations. To such a system we apply the general theory
of two-parameter eigenvalue problems as can be found in the books [2] and [22]. Since we have
only two parameters, the eigenvalues λ of −∆E are then determined by intersection points of
corresponding eigencurves.

The eigenfunctions of the form (1.4) when properly normalized will give us an orthonormal
basis for the Hilbert space L2(E). To the best knowledge of the author, this treatment of
equation (1.3) is new. Also the treatment of equation (1.5) appears to be new.

One should point out an important difference between the Laplace–Beltrami operator ∆S on
the unit sphere S in R3 and the Laplace–Beltrami operator ∆E on the ellipsoid E . If r, θ, ϕ
denote spherical coordinates in R3 and w(θ, ϕ) is a spherical harmonic of degree n ∈ N0 (that
is, −∆Sw = n(n+ 1)w), then rnw(θ, ϕ) is a solution of ∆u = 0. This shows a close connection
between the Laplacian in R3 and ∆S . There is no similar relationship between the Laplacian
in R3 and ∆E when we use ellipsoidal coordinates. In particular, there is no direct relationship
between ellipsoidal harmonics and eigenfunctions of ∆E .

In a previous paper [23], the author studied the eigenvalues of the Laplace–Beltrami operator
on a spheroid, i.e., an ellipsoid of revolution. The eigenvalues of the Laplace–Beltrami operator
on a surface of revolution in R3 can always be found by the method of separation of variables.
We obtain a system of two ordinary differential equation coupled by two parameters, however, in
the first equation only one parameter appears so that this (actually trivial) eigenvalue problem
can be solved first. We are then left with a classical Sturm–Liouville problem for the second
equation. Such a “weakly” coupled system is much easier to treat than the fully coupled one.
We point out that it is not possible to simply set c = b in this paper and obtain results from [23].
In order to obtain results from [23], we have to consider the limiting case c→ b with a, b being
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fixed. The precise justification of the limiting process is a delicate one and is not considered in
this paper.

We refer to paper [9] that studies the eigenvalue problem (1.3) when the ellipsoid E is close
to a sphere. We also mention the related papers [5] and [17]. For some modern applications of
eigenfunction expansions for Laplace–Beltrami operators, we refer to the introduction of [9]. We
add possible applications of fractional powers of Laplace–Beltrami operators to contemporary
studies involving “non-local” partial differential equations [10], and also the use of Laplace–
Beltrami eigenfunctions expansions on a boundary ∂Ω in the theory of boundary triples for
linear partial differential operators inside a domain Ω [15, Theorem 3.2]. Also note the explicit
use of Laplace–Beltrami eigenfunctions expansions in [7, Section 1 and Theorems 2.2–2.4].

This paper is organized as follows. In Section 2, we consider the algebraic and transcendental
form of ellipsoidal coordinates for the ellipsoid E . The transcendental form has the advantage
that it leads us to regular Sturm–Liouville problems whereas the algebraic form gives us singular
Sturm–Liouville problems. In Section 3, we transform equation (1.3) to ellipsoidal coordinates
and show that it “separates”, that is, it allows for solutions of the form (1.4). In Section 4, we
obtain and investigate the two-parameter Sturm–Liouville problem that completely determines
the eigenvalues and eigenfunctions of −∆E of even parity. We show in Theorem 4.2 that the
system of these eigenfunctions is complete in the Hilbert space of square-integrable functions
on E with even parity. In Section 5, we consider the corresponding two-parameter problems for
the seven other parities. The system of all eigenfunctions is then complete in the Hilbert space
of all square-integrable functions on E .

In Section 6, we collect some known results for the Laplace–Beltrami operator on the sphere
in terms of sphero-conal coordinates that will be useful in subsequent sections. In Section 7,
we mention that the two-parameter eigenvalue problem can be simplified by the Prüfer trans-
formation. In Section 8, we present an efficient method to compute the eigenvalue of −∆E
numerically. The eigencurves are approximated by the eigenvalues of finite matrix problems.
Finally, in Section 9, we consider ellipsoids which are close to the unit sphere. This allows us to
make a connection to the results in [9].

2 Ellipsoidal coordinates

We consider the ellipsoid E given by (1.2). On the ellipsoid E we introduce (algebraic) ellipsoidal
coordinates µ, ν [8, Section 15.1.1] by

x = akµ1/2ν1/2, (2.1)

y = bk(k′)−1(µ− 1)1/2(1− ν)1/2, (2.2)

z = c(k′)−1
(
1− k2µ

)1/2(
1− k2ν

)1/2
, (2.3)

where k, k′ ∈ (0, 1) are determined by

k2 =
a2 − b2

a2 − c2
, k′2 = 1− k2 =

b2 − c2

a2 − c2
. (2.4)

There is a one-to-one correspondence between the rectangle 0 < ν < 1 < µ < k−2 and

E+ := {(x, y, z) ∈ E : x, y, z > 0}.

There is also a one-to-one correspondence between the closed rectangle 0 ≤ ν ≤ 1 ≤ µ ≤ k−2

and the closure Ē+ of E+. Indeed, if we start at (µ, ν) = (1, 0) and move along the bound-
ary of the rectangle, then (x, y, z) moves along the boundary of E+ starting at (0, 0, c). The
points (µ, ν) = (1, 1), (µ, ν) =

(
k−2, 1

)
, (µ, ν) =

(
k−2, 0

)
correspond to (x, y, z) = (ak, 0, ck′),
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(x, y, z) = (a, 0, 0), (x, y, z) = (0, b, 0), respectively. The functions µ and ν can now be extended
to continuous functions on E with parity (0, 0, 0), that is, functions that satisfy

f(x, y, z) = f(−x, y, z) = f(x,−y, z) = f(x, y,−z) for all (x, y, z) ∈ E .

We note that these functions µ and ν also satisfy

µν = a−2k−2x2, µ+ ν = 1 + a−2k−2x2 + b−2k−2(k′)2y2. (2.5)

It follows that µν and µ+ν are analytic functions on E . Therefore, every symmetric polynomial
in µ, ν is also an analytic function on E . However, µ, ν are not analytic on E . In fact, the
functions µ, ν are analytic at every point of E except the four points with x = ±ak, y = 0.
This follows from the observation that we can solve (2.5) for µ, ν locally at (x0, y0) by analytic
functions of x, y except when µ(x0, y0, z0) = ν(x0, y0, z0). But µ = ν only happens when
ν = µ = 1 and this happens only at the four points (x0, y0, z0) = (±ak, 0,±ck′).

Lemma 2.1. Let f be an analytic function defined on an open region D in the complex plane
containing the interval

[
0, k−2

]
. Then f(µ)f(ν) is an analytic function on E.

Proof. We already saw that f(µ)f(ν) is analytic on E with the possible exception of the four
points (x0, y0, z0) = (±ak, 0,±ck′). In order to show that f(µ)f(ν) is also analytic at these
four points, it will be sufficient to show analyticity at (x0, y0, z0) = (ak, 0, ck′). The function f
admits a power series expansion

f(ξ) =

∞∑
n=0

cn(ξ − 1)n

for ξ close to 1. Then

f(ξ)f(η) =
∞∑
n=0

fn(ξ, η), fn(ξ, η) :=
n∑

m=0

cmcn−m(ξ − 1)m(η − 1)n−m (2.6)

for ξ and η close to 1. The functions fn(ξ, η) are symmetric polynomials in ξ, η. Therefore, the
functions fn(µ, ν) are analytic in x, y for (x, y) close to (x0, y0), where we allow complex values
of x, y. Since the expansion in (2.6) converges locally uniformly in a neighborhood of (x0, y0),
we obtain that f(µ)f(ν) is analytic at (x0, y0, z0). ■

The metric tensor of ellipsoidal coordinates µ ∈
(
1, k−2

)
, ν ∈ (0, 1) on E+ is given by

g1 := g11 = (µ− ν)F (µ), (2.7)

g2 := g22 = −(µ− ν)F (ν), (2.8)

g12 = 0, (2.9)

where

F (µ) :=

(
a2 − b2

)
µ− a2

4µ(µ− 1)
(
µ− k−2

) .
In particular, this shows that these coordinates are orthogonal.

Let sn(ξ, k), cn(ξ, k) and dn(ξ, k) denote the Jacobian elliptic functions corresponding to the
modulus k ∈ (0, 1) given by (2.4). These functions have period 4K, where K is the complete
elliptic integral

K = K(k) =

∫ π/2

0

dϕ(
1− k2 sin2 ϕ

)1/2 .
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Figure 1. Coordinate lines of ellipsoidal coordinates.

We will also use Jacobian elliptic functions corresponding to the modulus k′ =
√
1− k2 and the

complete elliptic integral K ′ = K(k′). By setting

µ = k−2 dn2(s, k′), ν = sn2(t, k), s ∈ (0,K ′), t ∈ (0,K),

we introduce transcendental ellipsoidal coordinates s, t in E+, so

x = a dn(s, k′) sn(t, k), y = b cn(s, k′) cn(t, k), z = c sn(s, k′) dn(t, k).

When we allow s ∈ (−K ′,K ′) and t ∈ (−2K, 2K], then the ellipsoidal coordinates (s, t) are
in one-to-one correspondence with the points of the ellipsoid E with the exception of two cuts
passing through the north pole (0, 0, c) and south pole (0, 0,−c) given by s = K ′ and s = −K ′,
respectively, that is,

x = ak sn(t, k), y = 0, z = ±cdn(t, k), t ∈ [−K,K].

Figure 1 depicts the ellipsoid with semi-axes a = 3, b = 2, c = 1 in bird’s eye view. Coordinate
lines s = 1

3mK
′, m = 0, 1, 2 and t = 1

3nK, n = −5,−4, . . . , 5, 6 are shown in red and green,
respectively. The branch cut is shown in blue.

From (2.7)–(2.9), we find the metric tensor in terms of the coordinates s, t

g1 =
(
c2 cn2(s, k′) + b2 sn2(s, k′)

)(
dn2(s, k′)− k2 sn2(t, k)

)
, (2.10)

g2 =
(
a2 cn2(t, k) + b2 sn2(t, k)

)(
dn2(s, k′)− k2 sn2(t, k)

)
, (2.11)

g12 = 0. (2.12)

3 The Laplace–Beltrami operator

In terms of the coordinates µ and ν, the Laplace–Beltrami operator ∆E on the ellipsoid E is
given by

∆Eu = (g1g2)
−1/2

(
∂

∂µ

(
g
1/2
2 g

−1/2
1

∂u

∂µ

)
+

∂

∂ν

(
g
1/2
1 g

−1/2
2

∂u

∂ν

))
=

1

µ− ν

(
1

F (µ)1/2
∂

∂µ

(
1

F (µ)1/2
∂u

∂µ

)
+

1

(−F (ν))1/2
∂

∂ν

(
1

(−F (ν))1/2
∂u

∂ν

))
.
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In the eigenvalue equation −∆Eu = λu, we can separate variables as follows. If v(µ) is a solution
of the differential equation

d

dµ

(
1

F (µ)1/2
dv

dµ

)
+ F (µ)1/2

(
λµ− hk−2

)
v = 0, 1 < µ < k−2, (3.1)

and w(ν) is a solution of the differential equation

d

dν

(
1

(−F (ν))1/2
dw

dν

)
− (−F (ν))1/2

(
λν − hk−2

)
w = 0, 0 < ν < 1, (3.2)

then u(µ, ν) = v(µ)w(ν) is a solution of −∆Eu = λu on E+. In these equations h ∈ R denotes
the separation parameter.

Equation (3.1) can be written in the form

d2v

dµ2
+

1

2

(
1

µ
+

1

µ− 1
+

1

µ− k−2
− 1

µ− d

)
dv

dµ
+
(
λµ− hk−2

)
F (µ)v = 0, (3.3)

where

d :=
a2

a2 − b2
> k−2.

Equation (3.2) can be written in exactly the same form with ν replacing µ and w replacing v.
Therefore, the differential equations (3.1) and (3.2) are actually the same equation but they are
considered on different intervals. It is interesting to note that equation (3.3) has five singularities
at 0, 1, k−2, d and ∞. The first four are regular singularities [20, Sections 5 and 4] with
indices {0, 12}, {0,

1
2}, {0,

1
2}, {0,

3
2} respectively but ∞ is an irregular singularity unless λ = 0.

Equation (3.3) can be considered as an extension of the Lamé equation (1.1) in its algebraic form
[21, Section 29.2.2]. The Lamé equation has only four singularities at 0, 1, k−2, ∞ and all of
them are regular. The additional singularity d appears in connection with the Laplace–Beltrami
operator on the ellipsoid and makes the differential equation more difficult to treat.

Since the singularities 0, 1, k−2 are regular and each has index 0, equation (3.3) admits
nontrivial Fuchs–Frobenius power series solutions in powers of µ, µ − 1 and µ − k−2. Usually,
these solutions are not connected by analytic continuation. We are interested in the exceptional
case that all three solutions are connected.

Lemma 3.1. Let the parameters λ, h be such that differential equation (3.3) admits a non-
trivial analytic solution f(µ) on an open region D containing the interval

[
0, k−2

]
. Then the

function u on E defined by f(µ)f(ν) is an analytic function on E with parity (0, 0, 0) and it is
an eigenfunction of −∆E corresponding to the eigenvalue λ.

Proof. It follows from Lemma 2.1 that u is analytic on E . By our derivation, we know that u
solves −∆Eu = λu on E+. Both u and ∆Eu have the same parity (0, 0, 0) so −∆Eu = λu
holds on E . ■

Note that in the situation of Lemma 3.1 the region D can be taken as the entire complex
plane with the branch cut [d,∞) removed.

4 A two-parameter Sturm–Liouville problem

Our goal is to prove existence of pairs λ, h as indicated in Lemma 3.1, and to show that the
corresponding λ’s comprise all eigenvalues of −∆E having eigenfunction with parity (0, 0, 0).
To that purpose, we prefer to use the transcendental ellipsoidal coordinates s, t because then
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we arrive at a regular two-parameter Sturm–Liouville system. If we use the coordinates µ
and ν, then our Sturm–Liouville problems have singular endpoints which makes theoretical and
numerical work more difficult.

We set µ = k−2 dn2(s, k′) and ν = sn2(t, k) in (3.3), and, after some computations, we obtain

d

ds

(
1

p(s)

dv

ds

)
+ p(s)

(
−h+ λ dn2(s, k′)

)
v = 0, (4.1)

d

dt

(
1

q(t)

dw

dt

)
+ q(t)

(
h− λk2 sn2(t, k)

)
w = 0, (4.2)

where

p(s) :=
(
c2 cn2(s, k′) + b2 sn2(s, k′)

)1/2
, (4.3)

q(t) :=
(
a2 cn2(t, k) + b2 sn2(t, k)

)1/2
. (4.4)

When we substitute t = K + iK ′ − is, s ∈ R, and use the identities

k sn(t, k) = dn(s, k′), k cn(t, k) = −ik′ cn(s, k′), dn(t, k) = k′ sn(s, k′),

we find that p(s) = q(t) and equation (4.1) transforms to (4.2). So we may say that (4.1)
and (4.2) are the same differential equations but considered on different intervals in the complex
plane. Note also that equation (4.1) can be obtained from (4.2) by interchanging a with c (which
automatically interchanges k with k′) and replacing h by λ − h. If we put q(t) = 1, then (4.2)
is the Lamé equation (1.1) in its standard form, so (4.2) can be seen as a generalization of the
Lamé equation. We add the Neumann boundary conditions

v′(0) = v′(K ′) = 0, (4.5)

w′(0) = w′(K) = 0. (4.6)

They correspond to the conditions that v as a function of µ is a Fuchs–Frobenius solution of (3.3)
at µ = 1 and µ = k−2 belonging to the indices 0, and w as a function of ν is a Fuchs–Frobenius
solution of (3.3) at ν = 0 and ν = 1 belonging to the indices 0.

For every fixed real λ, equation (4.1) subject to boundary conditions (4.5) poses a regular
Sturm–Liouville problem [24, Section 27] with spectral parameter −h. Similarly, for every fixed
real λ, (4.2) subject to boundary conditions (4.6) poses a regular Sturm–Liouville problem with
spectral parameter h. If we combine these problems, we obtain a regular two-parameter Sturm–
Liouville problem [2]. A pair λ, h is called an eigenvalue of this problem if there exist a nontrivial
solution v(s), 0 ≤ s ≤ K ′, of (4.1) and (4.5) and a nontrivial solution w(t), 0 ≤ t ≤ K,
of (4.2) and (4.6). If λ, h is an eigenvalue of this two-parameter Sturm–Liouville problem, then
Lemma 3.1 shows that λ is an eigenvalue of −∆E having an eigenfunction of parity (0, 0, 0).

If v(s) is a solution of equation (4.1), then v(s+2K ′) and v(−s) are also solutions. Therefore,
a solution v(s) of (4.1) satisfies the boundary conditions (4.5) if and only if it is even and has
period 2K ′. A similar remark applies to equation (4.2). Taking into account the substitution
t = K + iK ′ − is, we see that λ, h is an eigenvalue pair if and only if equation (4.2) admits
a nontrivial analytic solution w(t) defined on the union S1 ∪ S2 of two strips

S1 := {t ∈ C : |Im t| < δ}, S2 = {t ∈ C : |Re t−K| < δ}

for some sufficiently small positive δ such that w(t) has period 2K on S1, period 2iK ′ on S2 and,
in addition, is even with respect to K, that is, w(t) = w(2K − t). So the eigenvalue problem
consists in finding doubly-periodic solutions of (4.2).
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For every λ ∈ R, the eigenvalues of the regular Sturm–Liouville problem (4.2) and (4.6) form
an increasing sequence

h0(λ) < h1(λ) < h2(λ) < · · · ,

which diverges to ∞. The subscript n of hn(λ) denotes the number of zeros of a corresponding
eigenfunction wn(t) in the interval (0,K). The graph of the eigenvalue functions hn(λ) are
called eigencurves [2, Section 6]. Similarly, equation (4.1) (with h replaced by H) subject to
conditions (4.5) generates eigenvalue functions

H0(λ) > H1(λ) > H2(λ) > · · · ,

where the subscript m of Hm(λ) denotes the number of zeros of an eigenfunction vm(s) in the
interval (0,K ′). The eigenvalues λ, h of the two-parameter eigenvalue problem are exactly the
intersection points of eigencurves Hm(λ) and hn(λ), m,n ∈ N0. A few eigencurves are shown
in Figure 2 in Section 8.

We mention some properties of eigencurves proved in [4]. We cannot directly apply the results
from [4] to (4.1) and (4.2) because in [4] it is assumed that the factor of h is identically one.
However, we can transform this factor to 1 by a substitution of the independent variable. For
example, in (4.2) we introduce a new variable τ by setting

dτ

dt
= q(t).

Then (4.2) becomes

−d2w

dτ2
= (h+ λr(τ))w, r(τ) = −k2 sn2(t, k). (4.7)

Equation (4.7) has the form treated in [4]. Actually, equation (4.7) looks simpler than (4.2) but,
unfortunately, we do not have an explicit formula for r(τ) in terms of τ .

By [4, Theorem 2.1], Hm(λ) and hn(λ) are analytic functions of λ. Their first derivatives [4,
formula (2.5)] are given by

H ′
m(λ) =

∫K′

0 p(s) dn2(s, k′)vm(s)2 ds∫K′

0 p(s)vm(s)2 ds
, h′n(λ) =

∫K
0 q(t)k2 sn2(t, k)wn(t)

2 dt∫K
0 q(t)wn(t)2 dt

.

It follows from k2 < dn2(s, k′) < 1 on (0,K ′) and 0 < sn2(t, k) < 1 on (0,K) that

0 < h′n(λ) < k2 < H ′
m(λ) < 1 for all λ ∈ R. (4.8)

Regarding the asymptotic behavior of the eigencurves as λ→ ∞, we have from [4, Theorem 2.2]

lim
λ→∞

Hm(λ)

λ
= 1, lim

λ→∞

hn(λ)

λ
= 0. (4.9)

If λ = 0, then we can solve (4.1) and (4.2) explicitly. The solution of (4.1) with λ = 0 and initial
conditions v(0) = 1, v′(0) = 0 is

v(s) = cos

(
(−h)1/2

∫ s

0
p(σ) dσ

)
.

Using this formula and a similar one for (4.2), we obtain

Hm(0) = −m2π2
(∫ K′

0
p(s) ds

)−2

for m ∈ N0, (4.10)

hn(0) = n2π2
(∫ K

0
q(t) dt

)−2

for n ∈ N0. (4.11)
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Theorem 4.1. For every pair m,n ∈ N0, there is exactly one intersection point (λm,n, hm,n)
of the eigencurves Hm(λ) and hn(λ). We have λ0,0 = h0,0 = 0 and λm,n > 0, hm,n > 0 for all
(m,n) ̸= (0, 0).

Proof. Letm,n ∈ N0. It follows from (4.8) that there is at most one λ such thatHm(λ)=hn(λ).
By (4.10) and (4.11) we know that Hm(0) ≤ 0 ≤ hn(0). Therefore, by (4.9), there exists λ such
that Hm(λ) = hn(λ). If m = n = 0, then λ = 0 and H0(0) = h0(0) = 0. Otherwise, λ > 0
and hn(λ) > 0. ■

Our two-parameter Sturm–Liouville problem is right-definite, that is,

D(s, t) :=

∣∣∣∣ p(s) dn2(s, k′) −p(s)
−q(t)k2 sn2(t, k) q(t)

∣∣∣∣ = p(s)q(t)
(
dn2(s, k′)− k2 sn2(t, k)

)
> 0

for all s ∈ [0,K ′] and t ∈ [0,K] with the exception of s = K ′, t = K, where the determinant
vanishes. It is well known [2, Theorem 5.5.1] that right-definiteness implies the existence and
uniqueness of the intersection points (λm,n, hm,n) of eigencurves as stated in Theorem 4.1.

Let vm,n(s) and wm,n(t) denote real-valued eigenfunctions satisfying (4.1), (4.2), (4.5), (4.6)
for λ = λm,n and h = hm,n. It is easy to prove [2, Section 3.5] that the system of products

um,n(s, t) := vm,n(s)wm,n(t), m, n ∈ N0,

is orthogonal with respect to the inner product

⟨f, g⟩ =
∫ K

0

∫ K′

0
D(s, t)f(s, t)g(s, t) dsdt.

We notice that

D(s, t) = g
1/2
1 g

1/2
2

if g1 and g2 are expressed in ellipsoidal coordinates s, t according to (2.10) and (2.11). This
shows that the eigenfunctions um,n of −∆E are orthogonal in L2(E) because the surface measure

of E has the form dS = g
1/2
1 g

1/2
2 dsdt. We normalize the functions um,n so that they have norm 1

in L2(E).
We have the following completeness result.

Theorem 4.2.

(i) The double sequence um,n, m,n ∈ N0, forms an orthonormal basis for the subspace of L2(E)
consisting of functions with parity (0, 0, 0).

(ii) Every number λm,n, m,n ∈ N0, is an eigenvalue of the Laplace–Beltrami operator −∆E
with corresponding eigenfunction um,n of parity (0, 0, 0). Every eigenvalue of −∆E with an
eigenfunction of parity (0, 0, 0) is equal to one of the λm,n

Proof. (i) This follows from [22, Theorem 6.8.3].

(ii) We already mentioned that each λm,n is an eigenvalue of −∆E with eigenfunction um,n.
If −∆E had an eigenvalue λ with an eigenfunction u of parity (0, 0, 0) such that λ is different from
any λm,n, then u would be orthogonal to each um,n, and this is impossible by Theorem 4.2 (i). ■
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5 Eigenfunctions of other parities

Let κ1, κ2, κ3 ∈ {0, 1}. We say that a function f : E → C has parity (κ1, κ2, κ3) if

f(x, y, z) = (−1)κ1f(−x, y, z) = (−1)κ2f(x,−y, z) = (−1)κ3f(x, y,−z).

Since the Laplace–Beltrami operator ∆E leaves the parity of a function invariant, it is sufficient
to look for eigenvalues of −∆E with eigenfunctions of a given parity. This splits the eigenvalue
problem for −∆E into eight subproblems. We already proved some results on the eigenvalues
of −∆E with eigenfunctions of parity (0, 0, 0). We now mention analogous results for the other
seven parities.

The differential equations (3.3), (4.1) and (4.2) stay the same in all eight cases only the
boundary conditions (4.5) and (4.6) change. We need a nontrivial solution of (3.3) of the form

µκ1/2(µ− 1)κ2/2
(
µ− k−2

)κ3/2g(µ),

where g is an analytic function on an open region containing the interval
[
0, k−2

]
, that is, a non-

trivial solution of (3.3) which is simultaneously a Fuchs–Frobenius solution at the points 0, 1, k−2

belonging to the indices κ1/2, κ2/2, κ3/2, respectively. These conditions translate to boundary
conditions for (4.1) and (4.2) as follows:

v′(0) = 0 if κ3 = 0, v(0) = 0 if κ3 = 1, (5.1)

v′(K ′) = w′(K) = 0 if κ2 = 0, v(K ′) = w(K) = 0 if κ2 = 1, (5.2)

w′(0) = 0 if κ1 = 0, w(0) = 0 if κ1 = 1. (5.3)

For each κ = (κ1, κ2, κ3) ∈ {0, 1}3, we obtain a regular two-parameter Sturm–Liouville problem
for the differential equations (4.1) and (4.2) subject to boundary conditions (5.1)–(5.3). We de-
note the corresponding eigenvalue functions by Hm,κ(λ; a, b, c) and hn,κ(λ; a, b, c). The solution λ
of Hm,κ(λ; a, b, c) = hn,κ(λ; a, b, c) we denote by λm,n,κ(a, b, c). This number λm,n,κ(a, b, c) is an
eigenvalue of the Laplace–Beltrami operator −∆E , and every eigenvalue of −∆E is of this form.
We recall that a, b, c denote the semi-axes of the ellipsoid E , κ is the parity of a corresponding
eigenfunction um,n,κ = vm,κ(s)wn,κ) when considered as a function on E , m is the number of
zeros of vm,κ in (0,K ′), and n is the number of zeros of wn,κ in (0,K).

For each parity, we get analogues of Theorems 4.1 and 4.2. We state the completeness theorem
below. The proof of this theorem is very similar to the proof of Theorem 4.2 and is omitted.

Theorem 5.1. Let κ ∈ {0, 1}3.

(i) The sequence um,n,κ, m,n ∈ N0, forms an orthonormal basis for the subspace of L2(E) con-
sisting of functions with parity κ. When we combine all eigenfunctions um,n,κ, m,n ∈ N0,
κ ∈ {0, 1}3, then we obtain an orthonormal basis for L2(E).

(ii) Every number λm,n,κ, m,n ∈ N0, is an eigenvalue of the Laplace–Beltrami operator −∆E
with corresponding eigenfunction um,n,κ of parity κ. Every eigenvalue of −∆E with an
eigenfunction of parity κ is equal to one of the λm,n,κ

6 The Laplace–Beltrami operator on the sphere

It is of interest to compare the two-parameter Sturm–Liouville problem (4.1) and (4.2) subject
to boundary conditions (5.1)–(5.3) with a well-known simpler problem that we obtain when
treating the Laplace–Beltrami operator ∆S on the sphere

S = {(x, y, z) : x2 + y2 + z2 = 1}.
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It is well known that the operator −∆S has eigenvalues n(n + 1), n ∈ N0. The eigenspace
corresponding to the eigenvalue n(n + 1) has dimension 2n + 1. Eigenfunctions belonging to
the eigenvalue n(n+ 1) are called spherical (surface) harmonics. Usually, we work with a basis
of spherical harmonics that are found by the method of separation variables in spherical coor-
dinates. We obtain spherical harmonics that are products of associated Legendre polynomials
and trigonometric functions. However, in this work, it is more convenient to use sphero-conal
coordinates. Then we obtain spherical harmonics expressed as products of Lamé polynomials
known as sphero-conal harmonics. This is explained below in more detail.

We introduce sphero-conal coordinates µ, ν on S by (2.1)–(2.3) with a = b = c = 1. It is
important to note that in case of the ellipsoid E the parameter k is defined by (2.4) whereas
k ∈ (0, 1) is arbitrary in case of the sphere. We then proceed as we did for the Laplace–
Beltrami operator on the ellipsoid. The differential equation (3.3) becomes the Lamé equa-
tion [21, formula (29.2.2)] in its algebraic form, and (4.2) becomes the Lamé equation in its
Jacobian form. We obtain a two-parameter Sturm–Liouville problem consisting of differential
equations (4.1) and (4.2) with p(s) = q(t) = 1 subject to boundary conditions (5.1)–(5.3). We
will denote the corresponding eigenvalue functions by Hm,κ(λ, k), hn,κ(λ, k) and the solution λ
of Hm,κ(λ, k) = hn,κ(λ, k) by Λm,n,κ (which is independent of k). These numbers Λm,n,κ are
eigenvalues of −∆S and they are given by

Λm,n,κ = (2m+ 2n+ |κ|)(2m+ 2n+ |κ|+ 1), |κ| := κ1 + κ2 + κ3. (6.1)

An eigenfunction of −∆S corresponding to the eigenvalue ℓ(ℓ+ 1) is given by the sphero-conal
harmonic

Um,n,κ(s, t) = Vm,n,κ(s)Wm,n,κ(t), (6.2)

where 2m+ 2n+ |κ| = ℓ, Wm,n,κ(t) is a Lamé polynomial and

Vm,n,κ(s) =Wm,n,κ(K + iK ′ − is).

The Lamé polynomial w(t) =Wm,n,κ(t) is a solution of the Lamé equation

w′′ +
(
hn,κ(ℓ(ℓ+ 1), k)− ℓ(ℓ+ 1)k2 sn2(t, k)

)
w = 0

of the form

w(t) = snκ1(t, k) cnκ2(t, k) dnκ3(t, k)P
(
sn2(t, k)

)
,

where P is a polynomial of degreem+n. Moreover, Vm,n,κ(s) hasm zeros in (0,K ′) andWm,n,κ(t)
has n zeros in (0,K). For more details on Lamé polynomials, we refer to Arscott [1, Chapter IX].
Arscott distinguishes eight species of Lamé polynomials which correspond to the eight parities
κ ∈ {0, 1}3 in our notation.

7 The Prüfer transformation

We introduce the Prüfer radius r(t) > 0 and the Prüfer angle θ(t) [24, Section 27.IV] for
system (4.2) and (4.6) by setting

w(t) = r(t) sin θ(t),
w′(t)

q(t)
= r(t) cos θ(t).

Then θ(t) satisfies the first-order differential equation

dθ

dt
= q(t)

(
cos2 θ +

(
h− λk2 sn2(t, k)

)
sin2 θ

)
(7.1)
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Figure 2. The Prüfer angle θ(t) (in red) and the curve on which the right-hand side of (7.1) vanishes

(in blue).

with initial condition

θ(0) = 1
2(1− κ1)π. (7.2)

The pair (λ, h) lies on the n-th eigencurve if

θ(K) = 1
2(1 + κ2)π + nπ. (7.3)

Consider the example a = 3, b = 2, c = 1, κ1 = 0, κ2 = 1, λ = 5 and n = 0. Then
hn,κ(λ) = 0.558216 . . . and the graph of θ(t) is shown in Figure 2.

Lemma 7.1. If κ2 = 1, λ > 0 and n ∈ N0, then every solution θ(t) of (7.1), (7.2) and (7.3)
satisfies θ′(t) > 0 for t ∈ [0,K].

Proof. We know that h > 0. If h− λk2 > 0 then h− λk2 sn2(t, k) > 0 for all t ∈ [0,K] and the
statement of the lemma follows immediately from (7.1). Now suppose that h− λk2 ≤ 0. Then
the region

R :=
{
(t, θ) ∈ [0,K]× R : cos2 θ +

(
h− λk2 sn2(t, k)

)
sin2 θ < 0

}
is given by

R = {(t, θ) : G(θ) < t ≤ K},

where

G(θ) = arcsn

(
h+ cot2 θ

λk2

)1/2

.

This function is only defined for θ with h + cot2 θ ≤ λk2. In Figure 2, R is the region to the
right of the blue curve. Our goal is to show that the graph of θ(t) cannot enter the region R.

If the point (t1, θ(t1)) lies on the boundary of R, then θ′(t1) = 0 and so (t, θ(t)) is outside
the closure R̄ of R for t < t1 close to t1. Therefore, once the graph of θ(t) enters R̄ it must stay
in R̄. Since all points (K, ℓπ), ℓ ∈ Z, lie outside of R̄, and κ2 = 1, the graph of θ(t) stays outside
of R̄ and so θ′(t) > 0 for all t ∈ [0,K]. ■
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If κ2 = 0, then Lemma 7.1 is not always true. For example, if κ1 = κ2 = 0 and n = 0,
then θ(0) = θ(K) = 1

2π, so θ
′(t) cannot be positive for all t ∈ [0,K]. If θ′(t) is not positive

throughout the interval [0,K] then arguing as in the proof of Lemma 7.1 one can show that
there is t0 ∈ (0,K] such that θ′(t0) = 0, θ′(t) > 0 for t ∈ [0, t0) and θ

′(t) < 0 for t ∈ (t0,K].

Theorem 7.2. For all m,n ∈ N0 and all parities κ = (κ1, κ2, κ3) with κ2 = 1, we have

a−2Λm,n,κ < λm,n,κ(a, b, c) < c−2Λm,n,κ, (7.4)

where Λm,n,κ is given by (6.1). If κ2 = 0, then

λm,n,κ(a, b, c) < c−2Λm,n,κ̂, (7.5)

where κ̂ = (κ1, 1, κ2). If κ2 = 0 and m,n ≥ 1, then

a−2Λm−1,n−1,κ̂ < λm,n,κ(a, b, c). (7.6)

Proof. Since λm,n,κ(ra, rb, rc) = r−2λm,n,κ(a, b, c), it is sufficient to assume that c = 1 in the
proof of the second inequality in (7.4). Then the function q(t) defined by (4.4) satisfies q(t) > 1.
Let ψ(t) be the solution of the differential equation

dψ

dt
= f(t, ψ) := cos2 ψ +

(
h− λk2 sn2(t, k)

)
sin2 ψ

determined by the initial condition ψ(0) = 1
2(1− κ1)π. Then Lemma 7.1 gives

θ′(t)− f(t, θ(t)) = θ′(t)
(
1− q(t)−1

)
> 0 = ψ′(t)− f(t, ψ(t)).

We also have ψ(0) = θ(0) and ψ′(0) < θ′(0). Now the comparison theorem [25, ????? II.9.III]
yields ψ(t) < θ(t) for 0 < t ≤ K. Using this inequality for t = K, we obtain from (7.3) that

hn,κ(λ; a, b, c) < hn,κ(λ, k).

Since p(s) > 1 for 0 < s ≤ K ′, we can show in a similar way that

Hm,κ(λ; a, b, c) > Hm,κ(λ, k).

Let λ0 = λm,n,κ(a, b, c). Then

Hm,κ(λ0, k) < Hm,κ(λ0; a, b, c) = hn,κ(λ0; a, b, c) < hn,κ(λ0, k).

Therefore, if we set g(λ) = Hm,κ(λ, k)−hn,k(λ, k), then g(λ0) < 0. Now g(Λm,n,κ) = 0 and g(λ)
is an increasing function so λ0 < Λm,n,κ completing the proof of the second inequality in (7.4).
The first inequality is proved in a very similar way.

To prove (7.5), we assume κ2 = 0 and c = 1. Then we have

Hm,κ(λ; a, b, c) > Hm,κ̂(λ; a, b, c), hn,κ(λ; a, b, c) < hn,κ̂(λ; a, b, c),

so λm,n,κ(a, b, c) < λm,n,κ̂(a, b, c). Now (7.5) follows from (7.4) applied to κ̂ in place of κ.

Inequality (7.6) is proved in a similar way. ■
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8 Approximation by matrix eigenvalue problems

The eigenvalue functions hn(λ) for equation (4.2) can be computed using the Prüfer angle by
the SLEIGN2 code [3]. However, we present another method which approximates the eigenval-
ues hn(λ) by eigenvalues of finite matrices. We transform the differential equation (4.2) into
trigonometric form and then expand eigenfunctions in Fourier series. This method was used by
Ince [13] in order to compute eigenvalues of the Lamé equation (1.1).

Following Erdélyi [8, formula (4), p. 56], we substitute

τ = 1
2π − am(t, k)

in (4.2) where am denotes the Jacobian amplitude function [21, Section 22.16 (i)]. We multi-
ply (4.2) by q(t)3 and use

dτ

dt
= −dn(t, k), cn(t, k) = sin τ, sn(t, k) = cos τ.

Then we obtain

Dw + λCw = hBw, (8.1)

where D is the differential operator

Dw := −
(
a2 sin2 τ + b2 cos2 τ

)(
1− k2 cos2 τ

)d2w
dτ2

− c2k2 cos τ sin τ
dw

dτ

and C, B are multiplication operators

Cw := k2 cos2 τ
(
a2 sin2 τ + b2 cos2 τ

)2
w, Bw :=

(
a2 sin2 τ + b2 cos2 τ

)2
w.

The boundary conditions corresponding to (4.6) are

w′(0) = w′(1
2π

)
= 0, ′ =

d

dτ
.

We compute the matrix representation of D in the trigonometric basis cos(2nτ), n ∈ N0. Using(
a2 sin2 τ + b2 cos2 τ

)(
1− k2 cos2 τ

)
= 1

2

(
a2 + b2

)
− 1

8k
2
(
a2 + 3b2

)
+ 1

2

(
b2 − a2 − b2k2

)
cos(2τ) + 1

8k
2
(
a2 − b2

)
cos(4τ),

we obtain

D cos(2nτ) = n2
(
2
(
a2 + b2

)
− 1

2k
2
(
a2 + 3b2

))
cos(2nτ)

+ n2
(
b2 − a2 − b2k2

)
(cos((2n− 2)τ) + cos((2n+ 2)τ))

+ 1
4n

2k2
(
a2 − b2

)
(cos((2n− 4)τ) + cos((2n+ 4)τ))

+ 1
2nc

2k2(cos((2n− 2)τ)− cos((2n+ 2)τ)). (8.2)

Similarly,(
a2 sin2 τ + b2 cos2 τ

)2
cos2 τ = 1

16

(
a4 + 2a2b2 + 5b4

)
+ 1

32

(
15b4 + 2a2b2 − a4

)
cos(2τ)

+ 1
16

(
b2 − a2

)(
a2 + 3b2

)
cos(4τ) + 1

32

(
a2 − b2

)2
cos(6τ)

gives

C cos(2nτ) = 1
16k

2
(
a4 + 2a2b2 + 5b4

)
cos(2nτ)
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+ 1
64k

2
(
15b4 + 2a2b2 − a4

)
(cos((2n− 2)τ) + cos((2n+ 2)τ))

+ 1
32k

2
(
b2 − a2

)(
a2 + 3b2

)
(cos((2n− 4)τ) + cos((2n+ 4)τ))

+ 1
64k

2
(
a2 − b2

)2
(cos((2n− 6)τ) + cos((2n+ 6)τ)). (8.3)

Finally,(
a2 sin2 τ + b2 cos2 τ

)2
= 1

8

(
3a4 + 2a2b2 + 3b4

)
+ 1

2

(
b4 − a4

)
cos(2τ) + 3a4

)
+ 1

8

(
a2 − b2

)2
cos(4τ)

gives

B cos(2nτ) = 1
8

(
3a4 + 2a2b2 + 3b4

)
cos(2nτ)

+ 1
4

(
b4 − a4

)
(cos((2n− 2)τ) + cos((2n+ 2)τ))

+ 1
16

(
a2 − b2

)2
(cos((2n− 4)τ) + cos((2n+ 4)τ)). (8.4)

For N ∈ N, we define N + 1 by N + 1 matrices DN , CN , BN . The entry in the (j + 1)-th
row and (n+ 1)-th column of DN , CN , BN is the coefficient of cos(2jτ) on the right-hand side
of (8.2)–(8.4), respectively, where j, n = 0, . . . , N . For instance, we have

B4 =


b0 b1 b2 0 0
2b1 b0 + b2 b1 b2 0
2b2 b1 b0 b1 b2
0 b2 b1 b0 b1
0 0 b2 b1 b0

 ,

where

b0 :=
1
8

(
3a4 + 2a2b2 + 3b4

)
, b1 :=

1
4

(
b4 − a4

)
, b2 :=

1
16

(
a2 − b2

)2
.

We consider the generalized matrix eigenvalue problem

DNu+ λCNu = hBNu.

We denote its eigenvalues h by ĥn,N (λ; a, b, c), n = 0, 1, . . . , N , arranged in increasing order of

their real parts. We consider ĥn,N (λ; a, b, c) as an approximation to hn,κ(λ; a, b, c) with parity
κ = (0, 0, 0). This is confirmed by the following result.

Theorem 8.1. For every a > b > c > 0, m,n ∈ N0 and λ > 0, we have

lim
N→∞

ĥn,N (λ; a, b, c) = hn,κ(λ; a, b, c), where κ = (0, 0, 0).

Proof. We assume that a = 1 without loss of generality. We apply a general theorem [23,
Theorem B.1] from operator theory in Hilbert space. Our Hilbert space is H = L2

(
0, 12π

)
. The

operator on the left-hand side of (8.1) is decomposed as D + λC = A + S, S = S1 + S2 + S3,
where

Au := −u′′,
S1u := f1(τ)u

′′, f1(τ) := 1−
(
sin2 τ + b2 cos2 τ

)(
1− k2 cos2 τ

)
,

S2u := f2(t)u
′, f2(τ) := −c2k2 cos τ sin τ,

S3u := f3(τ)u, f3(τ) := λk2 cos2 τ
(
sin2 τ + b2 cos2 τ

)2
.
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The domain of A consists of all continuously differentiable functions u :
[
0, 12π

]
→ C such that u′

is absolutely continuous, u′′ ∈ H, and u′(0) = u′
(
1
2π

)
= 0. The operator A is self-adjoint,

positive semi-definite with compact resolvent. Its eigenfunctions are

e0(τ) =

√
2

π
, eℓ(τ) =

2√
π
cos(2ℓτ), ℓ ∈ N.

The system {eℓ}ℓ∈N0 forms an orthonormal basis for H. The domains of S1, S2 are taken to
be D(A) and the domain of S3 is H.

In [23, Theorem B.1], it is assumed that there are nonnegative constants α, β with β < 1
such that

∥Su∥2 ≤ α2∥u∥2 + β2∥Au∥2 for all u ∈ D(A), (8.5)

|⟨PnSu, u⟩| ≤ α⟨u, u⟩+ β⟨Au, u⟩ for all u ∈ D(A), (8.6)

where Pn is the orthogonal projection onto the linear span of {e0, e1, . . . , en}, and ∥ · ∥, ⟨·, ·⟩
denote the norm and inner product of H. The existence of these constants is shown in the
following lemma.

The statement of Theorem 8.1 now follows from [23, Theorems B.1 and B.2]. ■

Lemma 8.2. There are nonnegative constants α, β with β < 1 such that (8.5) and (8.6) hold.

Proof. We show (8.5). We have

∥S1u∥ ≤ ∥f1∥∞∥Au∥, ∥S3u|| ≤ ∥f3∥∞∥u∥.

Moreover, for every ϵ > 0,

∥S2u∥2 =
∫ π/2

0
|f2(τ)|2|u′(τ)|2 dτ ≤ ∥f2∥2∞

∫ π/2

0
u′(τ)u′(τ) dτ

= −∥f2∥2∞
∫ π/2

0
u′′(τ)u(τ) dτ ≤ ∥f2∥2∞

(
ϵ−2∥u∥2 + ϵ2∥Au∥2

)
.

Therefore,

∥Su∥ ≤ γ∥u∥+ δ∥Au∥, ∥Su∥2 ≤
(
1 + ϵ−1

)
γ2∥u∥2 + (1 + ϵ)δ2∥Au∥2,

where

γ = ∥f3∥∞ + ϵ−1∥f2∥∞, δ = ∥f1∥∞ + ϵ∥f2∥∞.

Since ∥f1∥∞ < 1, this implies (8.5) with β < 1 if we choose ϵ > 0 sufficiently small.
We show (8.6). Let

u =

∞∑
ℓ=0

cℓeℓ ∈ D(A).

Then

Pnu(τ) =
n∑

ℓ=0

cℓeℓ(τ),
d

dτ
Pnu(τ) = −

n∑
ℓ=1

2ℓcℓ
2√
π
sin(2ℓτ).

Therefore,

∥(Pnu)
′∥2 =

n∑
ℓ=1

4ℓ2|cℓ|2 ≤
∞∑
ℓ=1

4ℓ2|cℓ|2 = ∥u′∥2. (8.7)
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Now

⟨PnS1u, u⟩ = ⟨S1u, Pnu⟩ =
∫ π/2

0
f1(τ)u

′′(τ)Pnu(τ) dτ = −
∫ π/2

0
u′(τ)

d

dτ

(
f1(τ)Pnu(τ)

)
dτ

= −
∫ π/2

0
u′(τ)f ′1(τ)Pnu(τ) dτ −

∫ π/2

0
u′(τ)f1(τ)

d

dτ
Pnu(τ) dτ.

Therefore, using (8.7), for any ϵ > 0,

|⟨PnS1u, u⟩| ≤ ∥f ′1∥∞
∫ π/2

0
|u′(τ)||Pnu(τ)| dτ + ∥f1∥∞

∫ π/2

0
|u′(τ)|

∣∣∣∣ ddτ Pnu(τ)

∣∣∣∣dτ
≤ ϵ−1∥f ′1∥∞

∫ π/2

0
|u(τ)|2 dτ + (ϵ∥f ′1∥∞ + ∥f1∥∞)

∫ π/2

0
|u′(τ)|2 dτ

= ϵ−1∥f ′1∥∞⟨u, u⟩+ (ϵ∥f ′1∥∞ + ∥f1∥∞)⟨Au, u⟩.

Moreover, we have

|⟨PnS2u, u⟩| ≤ ∥f2∥∞
(
ϵ−1⟨u, u⟩+ ϵ⟨Au, u⟩

)
,

|⟨PnS3u, u⟩| ≤ ∥f3∥∞⟨u, u⟩.

By adding these estimates, we obtain (8.6) with β < 1 if we choose ϵ > 0 sufficiently small. ■

Numerical example: We take a = 3, b = 2, c = 1. We compute the eigenvalue functions
H0(λ) > H1(λ) for system (4.1) and (4.5) and h0(λ) < h1(λ) for system (4.2) and (4.6) by the
method from Theorem 8.1 with N = 7. We choose N = 7 because for larger values of N (that
should give us more accurate results) there is no change in the displayed values of the eigenvalues
anymore. Currently we do not have strict error bounds for these computations. The graphs of
the eigenvalue functions are shown in Figure 3. The λ-values of their intersection points give us
eigenvalues of the Laplace–Beltrami operator −∆E , namely,

λ0,0 = 0, λ0,1 = 1.074471 . . . , λ1,0 = 2.134154 . . . , λ1,1 = 5.029767 . . . .

The intersection points are computed using bisection or regula falsi (or one of its improved
variants).

When working with the boundary conditions w(0) = w
(
1
2π

)
= 0 we use the basis sin(2nτ),

n ∈ N. We obtain the corresponding matrix representations for D, C, B from (8.2)–(8.4) by
replacing cos by sin everywhere. Note that these matrix representations agree with those with
respect to cos(2nτ) when we delete the first row and first column of the latter, except for the three
entries in the i-th row and j-th column with (i, j) = (1, 1), (1, 2), (2, 1). Similarly, when working
with the boundary conditions w′(0) = w

(
1
2π

)
= 0 we use the basis cos((2n+ 1)τ), n ∈ N0. The

corresponding matrix representations are obtained from (8.2)–(8.4) by replacing n by n+ 1
2 . If

the boundary conditions are w(0) = w′(1
2π

)
= 0, we use the basis sin((2n+ 1)τ), n ∈ N0. The

corresponding matrix representations are obtained from (8.2)–(8.4) by replacing n by n+ 1
2 and

cos by sin. The matrix representations in the bases cos((2n+1)τ) and sin((2n+1)τ) only differ
in the six positions (i, j) = (1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (3, 1).

9 Ellipsoids close to the unit sphere

In this section, k ∈ (0, 1) is a fixed number and k′ :=
√
1− k2. We consider the ellipsoid E(ϵ)

with semi-axes

a =
(
1 + k2ϵ

)1/2
, b = 1, c =

(
1− k′2ϵ

)1/2
for 0 < ϵ < (k′)−2.
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Figure 3. Eigencurves H0(λ), H1(λ) (red) and h0(λ), h1(λ) (green) for a = 3, b = 2, c = 1.

In the notation E(ϵ), we suppressed the dependence of E(ϵ) on k. The given number k agrees
with the number k from (2.4) associated with E(ϵ). If ϵ → 0, then E(ϵ) approaches the unit
sphere. The functions p(s) and q(t) from (4.3) and (4.4) become

p(s) =
(
1− k′2ϵ cn2(s, k′)

)1/2
, q(t) =

(
1 + k2ϵ cn2(t, k)

)1/2
.

We denote the eigenvalue λm,n,κ(a, b, c) for the ellipsoid E(ϵ) by λm,n,κ(ϵ). Similarly, we de-
note the eigenvalue functions associated with (4.1), (4.2), (5.1), (5.2), (5.3) by Hm,κ(λ, ϵ) and
hn,κ(λ, ϵ), respectively. The corresponding two-parameter eigenvalue problems can be considered
not only for 0 < ϵ < k′−2 but also for −k−2 < ϵ < k′−2. If ϵ = 0, we obtain the eigenvalue prob-
lem determining Lamé polynomials as mentioned in Section 6. In particular, λm,n,κ(0) = Λm,n,κ

with Λm,n,κ given by (6.1).

Lemma 9.1. Let m,n ∈ N0 and κ ∈ {0, 1}3. The eigenvalue functions Hm,κ(λ, ϵ) and hn,κ(λ, ϵ)
are analytic at λ = Λm,n,κ and ϵ = 0. If w(t) = Wm,n,κ(t) is a corresponding Lamé polynomial
and v(s) = w(K + iK ′ − is), then

∂Hm,κ

∂λ
(Λm,n,κ, 0) =

∫K′

0 dn2(s, k′)v(s)2 ds∫K′

0 v(s)2 ds
, (9.1)

∂Hm,κ

∂ϵ
(Λm,n,κ, 0) =

k′2
∫K′

0 cn(s, k′)v(s) d
ds

(
cn(s, k′)dvds

)
ds∫K′

0 v(s)2 ds
, (9.2)

∂hn,κ
∂λ

(Λm,n,κ, 0) =
k2

∫K
0 sn2(t, k)w(t)2 dt∫K

0 w(t)2 dt
, (9.3)

∂hn,κ
∂ϵ

(Λm,n,κ, 0) =
k2

∫K
0 cn(t, k)w(t) d

dt

(
cn(t, k)dwdt

)
dt∫K

0 w(t)2 dt
. (9.4)
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Proof. Consider a regular Sturm–Liouville problem of the form

− d

dt

(
P (t, µ)

dw

dt

)
+Q(t, µ)w = hR(t, µ)w, α ≤ t ≤ β, (9.5)

with separated boundary conditions at t = α and t = β (we use only Neumann or Dirichlet
conditions.) The eigenvalue parameter is h and the perturbation parameter is µ. The coefficient
functions P (t, µ), Q(t, µ) and R(t, µ) are continuous with continuous partial derivatives Pµ, Qµ

and Rµ with respect to µ for t ∈ [α, β] and µ is some interval J . Let h(µ) be the eigenvalue
of this Sturm–Liouville problem determined by a fixed oscillation number of a corresponding
eigenfunction w(t, µ). The eigenfunction w(t, µ) satisfies initial conditions at t = α that are
independent of µ. We differentiate (9.5) with respect to µ, multiply by w(t, µ), and integrate
from t = α to t = β. We obtain

dh

dµ

∫ β

α
R(t, µ)w(t, µ)2 dt =

∫ β

α

(
Pµ(t, µ)w

′(t, µ)2 + (Qµ(t, µ)− hRµ(t, µ))w(t, µ)
2
)
dt. (9.6)

If we apply (9.6) to our eigenvalue problems (4.1) and (4.2) with boundary conditions (5.1)–(5.3)
and µ = λ, we immediately obtain (9.1) and (9.3). If we apply (9.6) to (4.2), (4.6), (5.1) and
µ = ϵ, then we obtain

∂hn,κ
∂ϵ

(λ, 0) =
k2

∫K
0 cn2(t, k)

(
−w′(t)2 +

(
λk2 sn2(t, k)− h

)
w(t)2

)
dt

2
∫K
0 w(t)2 dt

,

where λ = Λm,n,κ. This gives (9.4) using Lamé’s differential equation

w′′ +
(
h− λk2 sn2(t, k)

)
w = 0

and the identity

cn2(t, k)
(
−w′2 + ww′′) = −

(
cn2(t, k)ww′)′ + 2 cn(t, k)w(cn(t, k)w′)′.

Equation (9.2) is proved similarly. ■

Theorem 9.2. Let m,n ∈ N0 and κ ∈ {0, 1}3. The function λm,n,κ(ϵ) is analytic at ϵ = 0 with
derivative

λ′m,n,κ(0) = −
∂Hm,κ

∂ϵ (Λm,n,κ, 0)− ∂hn,κ

∂ϵ (Λm,n,κ, 0)
∂Hm,κ

∂λ (Λm,n,κ, 0)− ∂hn,κ

∂λ (Λm,n,κ, 0)
, (9.7)

where the four partial derivatives on the right are given in Lemma 9.1.

Proof. The function λ = λm,n,κ(ϵ) solves

Hm,κ(λ, ϵ)− hn,κ(λ, ϵ) = 0, λ(0) = Λm,n,κ.

It follows from (9.1) and (9.3) that the partial derivative of Hm,κ(λ, ϵ)− hn,κ(λ, ϵ) with respect
to λ at the point (Λm,n,κ, 0) is positive. Now the implicit function theorem for analytic functions
shows that λ(ϵ) is analytic at ϵ = 0 and also gives (9.7). ■

We introduce the differential operator

Au =
k′2 cn(s, k′) ∂

∂s

(
cn(s, k′)∂u∂s

)
− k2 cn(t, k) ∂

∂t

(
cn(t, k)∂u∂t

)
dn2(s, k′)− k2 sn2(t, k)

.
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Then (9.7) becomes

λ′m,n,κ(0) = −⟨Au, u⟩S
⟨u, u⟩S

,

where u = Um,n,κ is the sphero-conal harmonic (6.2), and the inner product is

⟨u1, u2⟩S =

∫ K′

−K′

∫ 2K

−2K

(
dn2(s, k′)− k2 sn2(t, k)

)
u1(s, t)u2(s, t) dtds.

Fix ℓ ∈ N0 and κ ∈ {0, 1}3 such that ℓ − |κ| is nonnegative and even. Let V denote the vector
space of spherical harmonics homogeneous of degree ℓ with parity κ. The dimension d of V is
d = 1

2(ℓ − |κ|) + 1. Let u1, u2, . . . , ud be an orthonormal basis of V with respect to the inner
product ⟨·, ·⟩S consisting of sphero-conal harmonics. It is easy to see that ⟨Aui, uj⟩S = 0 if i ̸= j,
so the matrixM1 with entries ⟨Aui, uj⟩S is diagonal and its diagonal entries are −λ′m,n,κ(0) with
2m+ 2n+ |κ| = ℓ.

The differential operator A can be expressed in spherical coordinates and then agrees with
the operator A1 in [9] with α = 1

2k
2, β = 0 and γ = −1

2k
′2. It is shown in [9] that the

matrix M2 with entries (⟨AUi, Uj⟩S) with U1, U2, . . . , Ud denoting an orthonormal basis of V
derived from separation of variables in spherical coordinates is tridiagonal. This matrix M2 is
similar to the diagonal matrix M1. Therefore, the derivatives −λ′m,n,κ(0) with 2m+2n+ |κ| = ℓ
are the eigenvalues of the matrix M2. This shows that our formula (9.7) is consistent with
[9, Theorem 4].

As an example, consider ℓ = 2 and κ = (0, 0, 0). Then the dimension of V is two. If m = 0,
n = 1, the corresponding Lamé polynomial is [1, p. 205]

w(t) = sn2(t, k)− 1

3k2
(
1 + k2 +

√
1− k2k′2

)
.

If m = 1, n = 0, we obtain the corresponding Lamé polynomial by replacing +
√
1− k2k2 by

−
√
1− k2k′2. We find from (9.7)

λ′0,1,(0,0,0)(0) = 2− 4k2 − 8
7

√
1− k2k′2,

λ′1,0,(0,0,0)(0) = 2− 4k2 + 8
7

√
1− k2k′2.

This result matches the result from [9].
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