Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 068, 28 pages      arXiv:2306.15582      https://doi.org/10.3842/SIGMA.2024.068
Contribution to the Special Issue on Symmetry, Invariants, and their Applications in honor of Peter J. Olver

Lie Admissible Triple Algebras: The Connection Algebra of Symmetric Spaces

Hans Z. Munthe-Kaas a and Jonatan Stava b
a) Department of Mathematics and Statistics, UiT The Arctic University of Norway, P.O. Box 6050, Stakkevollan, 9037 Tromsø, Norway
b) Department of Mathematics, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway

Received December 20, 2023, in final form July 03, 2024; Published online July 25, 2024

Abstract
Associated to a symmetric space there is a canonical connection with zero torsion and parallel curvature. This connection acts as a binary operator on the vector space of smooth sections of the tangent bundle, and it is linear with respect to the real numbers. Thus the smooth section of the tangent bundle together with the connection form an algebra we call the connection algebra. The constraints of zero torsion and constant curvature makes the connection algebra into a Lie admissible triple algebra. This is a type of algebra that generalises pre-Lie algebras, and it can be embedded into a post-Lie algebra in a canonical way that generalises the canonical embedding of Lie triple systems into Lie algebras. The free Lie admissible triple algebra can be described by incorporating triple-brackets into the leaves of rooted (non-planar) trees.

Key words: Lie admissible triple algebra; connection algebra; symmetric spaces.

pdf (497 kb)   tex (39 kb)  

References

  1. Al-Kaabi M.J.H., Monomial bases for free pre-Lie algebras, Sém. Lothar. Combin. 71 (2014), B71b, 19 pages, arXiv:1309.4243.
  2. Bertram W., The geometry of Jordan and Lie structures, Lecture Notes in Math., Vol. 1754, Springer, Berlin, 2000.
  3. Besse A.L., Einstein manifolds, Classics Math., Springer, Berlin, 2008.
  4. Calaque D., Ebrahimi-Fard K., Manchon D., Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series, Adv. in Appl. Math. 47 (2011), 282-308, arXiv:0806.2238.
  5. Chapoton F., Livernet M., Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices 2001 (2001), 395-408, arXiv:math.QA/0002069.
  6. Chartier P., Hairer E., Vilmart G., Algebraic structures of B-series, Found. Comput. Math. 10 (2010), 407-427.
  7. Curry C., Ebrahimi-Fard K., Munthe-Kaas H., What is a post-Lie algebra and why is it useful in geometric integration, in Numerical Mathematics and Advanced Applications - ENUMATH 2017, Lect. Notes Comput. Sci. Eng., Vol. 126, Springer, Cham, 2019, 429-437, arXiv:1712.09415.
  8. Dzhumadil'daev A., Löfwall C., Trees, free right-symmetric algebras, free Novikov algebras and identities, Homology Homotopy Appl. 4 (2002), 165-190.
  9. Ebrahimi-Fard K., Lundervold A., Munthe-Kaas H.Z., On the Lie enveloping algebra of a post-Lie algebra, J. Lie Theory 25 (2015), 1139-1165, arXiv:1410.6350.
  10. Gerstenhaber M., The cohomology structure of an associative ring, Ann. of Math. 78 (1963), 267-288.
  11. Golubchik I.Z., Sokolov V.V., Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras, J. Nonlinear Math. Phys. 7 (2000), 184-197, arXiv:nlin.SI/0003034.
  12. Grong E., Munthe-Kaas H.Z., Stava J., Post-Lie algebra structure of manifolds with constant curvature and torsion, J. Lie Theory 34 (2024), 339-352, arXiv:2305.02688.
  13. Iserles A., Munthe-Kaas H.Z., Nørsett S.P., Zanna A., Lie-group methods, in Acta Numerica, 2000, Acta Numer., Vol. 9, Cambridge University Press, Cambridge, 2000, 215-365.
  14. Jacobson N., General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70 (1951), 509-530.
  15. Loos O., Symmetric spaces. I: General theory, W.A. Benjamin, New York, 1969.
  16. Munthe-Kaas H., Lie-Butcher theory for Runge-Kutta methods, BIT 35 (1995), 572-587.
  17. Munthe-Kaas H., Geometric integration on symmetric spaces, J. Comput. Dyn. 11 (2024), 43-58, arXiv:2308.16012.
  18. Munthe-Kaas H., Krogstad S., On enumeration problems in Lie-Butcher theory, Future Generation Comput. Syst. 19 (2003), 1197-1205.
  19. Munthe-Kaas H.Z., Lundervold A., On post-Lie algebras, Lie-Butcher series and moving frames, Found. Comput. Math. 13 (2013), 583-613, arXiv:1203.4738.
  20. Munthe-Kaas H.Z., Stern A., Verdier O., Invariant connections, Lie algebra actions, and foundations of numerical integration on manifolds, SIAM J. Appl. Algebra Geom. 4 (2020), 49-68, arXiv:1903.10056.
  21. Munthe-Kaas H.Z., Wright W.M., On the Hopf algebraic structure of Lie group integrators, Found. Comput. Math. 8 (2008), 227-257, arXiv:math.AC/0603023.
  22. Nomizu K., Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
  23. Reutenauer C., Free Lie algebras, London Math. Soc. Monogr., Vol. 7, The Clarendon Press, Oxford University Press, New York, 1993.
  24. Ricci M.M.G., Levi-Civita T., Méthodes de calcul différentiel absolu et leurs applications, Math. Ann. 54 (1900), 125-201.
  25. Sokolov V., Algebraic structures related to integrable differential equations, Ensaios Mat., Vol. 31, Sociedade Brasileira de Matemática, Rio de Janeiro, 2017, arXiv:1711.10613.
  26. Vallette B., Homology of generalized partition posets, J. Pure Appl. Algebra 208 (2007), 699-725, arXiv:math.AT/0405312.
  27. Vinberg E., The theory of homogeneous convex cones, Trans. Mosc. Math. Soc. 12 (1963), 340-403.
  28. Yamaguti K., On algebras of totally geodesic spaces (Lie triple systems), J. Sci. Hiroshima Univ. Ser. A 21 (1957), 107-113.

Previous article  Next article  Contents of Volume 20 (2024)