|
SIGMA 20 (2024), 075, 9 pages arXiv:2402.14537
https://doi.org/10.3842/SIGMA.2024.075
Contribution to the Special Issue on Asymptotics and Applications of Special Functions in Memory of Richard Paris
McMahon-Type Asymptotic Expansions of the Zeros of the Coulomb Wave Functions
Amparo Gil a, Javier Segura b and Nico M. Temme c
a) Departamento de Matemática Aplicada y CC, de la Computación, ETSI Caminos, Universidad de Cantabria, 39005 Santander, Spain
b) Departamento de Matemáticas, Estadistica y Computación, Universidad de Cantabria, 39005 Santander, Spain
c) Valkenierstraat 25, 1825BD Alkmaar, The Netherlands
Received February 23, 2024, in final form August 07, 2024; Published online August 10, 2024
Abstract
We derive asymptotic expansions of the large zeros of the Coulomb wave functions and for those of their derivatives. The new expansions have the same form as the McMahon expansions of the zeros of the Bessel functions and reduce to them when a parameter is equal to zero. Numerical tests are provided to demonstrate the accuracy of the expansions.
Key words: Coulomb wave functions; McMahon-type zeros; asymptotic expansions.
pdf (425 kb)
tex (51 kb)
References
- Abramowitz M., Asymptotic expansions of Coulomb wave functions, Quart. Appl. Math. 7 (1949), 75-84.
- Ball J.S., Automatic computation of zeros of Bessel functions and other special functions, SIAM J. Sci. Comput. 21 (1999), 1458-1464.
- Ikebe Y., The zeros of regular Coulomb wave functions and of their derivatives, Math. Comp. 29 (1975), 878-887.
- Luna B.K., Papenbrock T., Low-energy bound states, resonances, and scattering of light ions, Phys. Rev. C 100 (2019), 054307, 17 pages, arXiv:1907.11345.
- Mcmahon J., On the roots of the Bessel and certain related functions, Ann. of Math. 9 (1894), 23-30.
- Miyazaki Y., Kikuchi Y., Cai D., Ikebe Y., Error analysis for the computation of zeros of regular Coulomb wave function and its first derivative, Math. Comp. 70 (2001), 1195-1204.
- Olver F.W.J., Maximon L.C., Bessel functions, in NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010, 215-286.
- Segura J., Reliable computation of the zeros of solutions of second order linear ODEs using a fourth order method, SIAM J. Numer. Anal. 48 (2010), 452-469.
- Temme N.M., Asymptotic methods for integrals, Ser. Anal., Vol. 6, World Scientific Publishing, Hackensack, NJ, 2014.
- Thompson I.J., Coulomb wave functions, in NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010, 741-756.
- Watson G.N., A treatise on the theory of Bessel functions, 2nd ed., Cambridge Math. Lib., Cambridge University Press, Cambridge, 1944.
|
|