Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 098, 32 pages      arXiv:2401.06032      https://doi.org/10.3842/SIGMA.2024.098

Bilinear Expansions of KP Multipair Correlators in BKP Correlators

Aleksandr Yu. Orlov ab
a) National Research University Higher School of Economics, Moscow, Russia
b) Institute of Oceanology, Moscow, Russia

Received February 03, 2024, in final form October 08, 2024; Published online October 31, 2024

Abstract
I present a generalization of our joint works with John Harnad (2021) that relates Schur functions, KP tau functions and KP correlation functions to Schur's $Q$-functions, BKP tau functions and BKP correlation functions, respectively.

Key words: Schur function; Schur's $Q$-function; charged fermions; neutral fermions; KP tau function; BKP tau function.

pdf (650 kb)   tex (39 kb)  

References

  1. Balogh F., Harnad J., Hurtubise J., Isotropic Grassmannians, Plücker and Cartan maps, J. Math. Phys. 62 (2021), 021701, 23 pages, arXiv:2007.03586.
  2. Date E., Jimbo M., Kashiwara M., Miwa T., Transformation groups for soliton equations. IV. A new hierarchy of soliton equations of KP-type, Phys. D 4 (1982), 343-365.
  3. Date E., Kashiwara M., Jimbo M., Miwa T., Transformation groups for soliton equations, in Nonlinear Integrable Systems -- Classical Theory and Quantum Theory (Kyoto, 1981), World Scientific, Singapore, 1983, 39-119.
  4. Eskin A., Okounkov A., Pandharipande R., The theta characteristic of a branched covering, Adv. Math. 217 (2008), 873-888, arXiv:math.AG/0312186.
  5. Harnad J., Balogh F., Tau functions and their applications, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2021.
  6. Harnad J., Lee E., Symmetric polynomials, generalized Jacobi-Trudi identities and $\tau$-functions, J. Math. Phys. 59 (2018), 091411, 23 pages, arXiv:1304.0020.
  7. Harnad J., Orlov A.Yu., Bilinear expansion of Schur functions in Schur $Q$-functions: a fermionic approach, Proc. Amer. Math. Soc. 149 (2021), 4117-4131, arXiv:2008.13734.
  8. Harnad J., Orlov A.Yu., Bilinear expansions of lattices of KP $\tau$-functions in BKP $\tau$-functions: a fermionic approach, J. Math. Phys. 62 (2021), 013508, 17 pages, arXiv:2010.05055.
  9. Harnad J., Orlov A.Yu., Polynomial KP and BKP $\tau$-functions and correlators, Ann. Henri Poincaré 22 (2021), 3025-3049, arXiv:2011.13339.
  10. Itoyama H., Mironov A., Morozov A., From Kronecker to tableaux pseudo-characters in tensor models, Phys. Lett. B 788 (2019), 76-81, arXiv:1808.07783.
  11. Ivanov V.N., Interpolation analogues of Schur $Q$-functions, J. Math. Sci. 131 (2005), 5495-5507.
  12. Jimbo M., Miwa T., Solitons and infinite-dimensional Lie algebras, Publ. Res. Inst. Math. Sci. 19 (1983), 943-1001.
  13. Kac V., van de Leur J., The geometry of spinors and the multicomponent BKP and DKP hierarchies, in The Bispectral Problem (Montreal, PQ, 1997), CRM Proc. Lecture Notes, Vol. 14, American Mathematical Society, Providence, RI, 1998, 159-202, arXiv:solv-int/9706006.
  14. Kac V., van de Leur J., Polynomial tau-functions of BKP and DKP hierarchies, J. Math. Phys. 60 (2019), 071702, 10 pages, arXiv:1811.08733.
  15. Kac V.G., Rozhkovskaya N., van de Leur J., Polynomial tau-functions of the KP, BKP, and the $s$-component KP hierarchies, J. Math. Phys. 62 (2021), 021702, 25 pages, arXiv:2005.02665.
  16. Lee J., A square root of Hurwitz numbers, Manuscripta Math. 162 (2020), 99-113, arXiv:1807.03631.
  17. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1995.
  18. Mironov A.D., Morozov A., Natanzon S.M., Cut-and-join structure and integrability for spin Hurwitz numbers, Eur. Phys. J. C 80 (2020), 97, 16 pages, arXiv:1904.11458.
  19. Mironov A.D., Morozov A.Yu., Natanzon S.M., Complete set of cut-and-join operators in the Hurwitz-Kontsevich theory, Theoret. and Math. Phys. 166 (2011), 1-22, arXiv:0904.4227.
  20. Mironov A.D., Morozov A.Yu., Natanzon S.M., Orlov A.Yu., Around spin Hurwitz numbers, Lett. Math. Phys. 111 (2021), 124, 39 pages, arXiv:2012.09847.
  21. Mironov A.D., Morozov A.Yu., Sleptsov A.V., Genus expansion of HOMFLY polynomials, Theoret. and Math. Phys. 177 (2013), 1435-1470, arXiv:1303.1015.
  22. Miwa T., Jimbo M., Date E., Solitons. Differential equations, symmetries and infinite-dimensional algebras, Cambridge Tracts in Math., Vol. 135, Cambridge University Press, Cambridge, 2000.
  23. Nimmo J.J.C., Hall-Littlewood symmetric functions and the BKP equation, J. Phys. A 23 (1990), 751-760.
  24. Okounkov A., Toda equations for Hurwitz numbers, Math. Res. Lett. 7 (2000), 447-453, arXiv:math.AG/0004128.
  25. Okounkov A., Olshanski G., Shifted Schur functions, St. Petersburg Math. J. 9 (1998), 239-300.
  26. Okounkov A., Olshanski G., Shifted Schur functions. II. The binomial formula for characters of classical groups and its applications, in Kirillov's Seminar on Representation Theory, Amer. Math. Soc. Transl. Ser. 2, Vol. 181, American Mathematical Society, Providence, RI, 1998, 245-271, arXiv:q-alg/9612025.
  27. Okounkov A., Pandharipande R., Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006), 517-560, arXiv:math.AG/0204305.
  28. Orlov A.Yu., Tau functions and matrix integrals, arXiv:math-ph/0210012.
  29. Orlov A.Yu., Notes about the KP/BKP correspondence, Theoret. and Math. Phys. 208 (2021), 1207-1227, arXiv:2104.05790.
  30. Sato M., Soliton equations as dynamical systems on infinite dimensional Grassmann manifold, Research Institute for Mathematical Sciences, Kyoto University, 1981, 30-46.
  31. Sergeev A.N., The tensor algebra of the identity representation as a module over the Lie superalgebras $\mathfrak{Gl}(n,m)$ and $Q(n)$, Math. USSR-Sb. 51 (1985), 419-427.
  32. Takasaki K., Initial value problem for the Toda lattice hierarchy, in Group Representations and Systems of Differential Equations (Tokyo, 1982), Adv. Stud. Pure Math., Vol. 4, North-Holland, Amsterdam, 1984, 139-163.
  33. Takebe T., Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy. I, Lett. Math. Phys. 21 (1991), 77-84.
  34. You Y., Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups, in Infinite-Dimensional Lie Algebras and Groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., Vol. 7, World Scientific, Teaneck, NJ, 1989, 449-464.

Previous article  Next article  Contents of Volume 20 (2024)