|
SIGMA 20 (2024), 099, 95 pages arXiv:2308.12333
https://doi.org/10.3842/SIGMA.2024.099
Elliptic Stable Envelopes for Certain Non-Symplectic Varieties and Dynamical $R$-Matrices for Superspin Chains from the Bethe/Gauge Correspondence
Nafiz Ishtiaque a, Seyed Faroogh Moosavian b and Yehao Zhou c
a) Institut des Hautes Études Scientifiques, 35 Rte de Chartres, 91440 Bures-sur-Yvette, France
b) Department of Physics, McGill University, Ernest Rutherford Physics Building, 3600 Rue University, Montréal, QC H3A 2T8, Canada
c) Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-0882, Japan
Received February 07, 2024, in final form October 11, 2024; Published online October 31, 2024
Abstract
We generalize Aganagic-Okounkov's theory of elliptic stable envelopes, and its physical realization in Dedushenko-Nekrasov's and Bullimore-Zhang's works, to certain varieties without holomorphic symplectic structure or polarization. These classes of varieties include, in particular, classical Higgs branches of 3d $\mathcal N=2$ quiver gauge theories. The Bethe/gauge correspondence relates such a gauge theory to an anisotropic/elliptic superspin chain, and the stable envelopes compute the $R$-matrix that solves the dynamical Yang-Baxter equation (dYBE) for this spin chain. As an illustrative example, we solve the dYBE for the elliptic $\mathfrak{sl}(1|1)$ spin chain with fundamental representations using the corresponding 3d $\mathcal N=2$ SQCD whose classical Higgs branch is the Lascoux resolution of a determinantal variety. Certain Janus partition functions of this theory on $I \times \mathbb E$ for an interval $I$ and an elliptic curve $\mathbb E$ compute the elliptic stable envelopes, and in turn the geometric elliptic $R$-matrix, of the anisotropic $\mathfrak{sl}(1|1)$ spin chain. Furthermore, we consider the 2d and 1d reductions of elliptic stable envelopes and the $R$-matrix. The reduction to 2d gives the K-theoretic stable envelopes and the trigonometric $R$-matrix, and a further reduction to 1d produces the cohomological stable envelopes and the rational $R$-matrix. The latter recovers Rimányi-Rozansky's results that appeared recently in the mathematical literature.
Key words: equivariant elliptic cohomology; elliptic stable envelope; 3d $\mathcal{N}=2$ theory; Janus interfaces; elliptic genus.
pdf (1454 kb)
tex (136 kb)
References
- Aganagic M., Okounkov A., Quasimap counts and Bethe eigenfunctions, Mosc. Math. J. 17 (2017), 565-600, arXiv:1704.08746.
- Aganagic M., Okounkov A., Elliptic stable envelopes, J. Amer. Math. Soc. 34 (2021), 79-133, arXiv:1604.00423.
- Aharony O., Hanany A., Intriligator K.A., Seiberg N., Strassler M., Aspects of ${\mathcal{N}=2}$ supersymmetric gauge theories in three-dimensions, Nuclear Phys. B 499 (1997), 67-99, arXiv:hep-th/9703110.
- Arav I., Cheung K.C.M., Gauntlett J.P., Roberts M.M., Rosen C., Spatially modulated and supersymmetric mass deformations of $\mathcal{N} = 4$ SYM, J. High Energy Phys. 2020 (2020), no. 11, 156, 64 pages, arXiv:2007.15095.
- Baxter R.J., Partition function of the eight-vertex lattice model, Ann. Physics 70 (1972), 193-228.
- Baxter R.J., Solvable eight-vertex model on an arbitrary planar lattice, Philos. Trans. Roy. Soc. London Ser. A 289 (1978), 315-346, arXiv:1978.0062.
- Baxter R.J., Exactly solved models in statistical mechanics, Academic Press, London, 1982.
- Bazhanov V.V., Integrable quantum systems and classical Lie algebras, Comm. Math. Phys. 113 (1987), 471-503.
- Bazhanov V.V., Quantum $R$-matrices and matrix generalization of trigonometric functions, Theoret. and Math. Phys. 73 (1987), 1035-1039.
- Bazhanov V.V., Shadrikov A.G., Trigonometric solutions of the triangle equations, and simple Lie superalgebras, Theoret. and Math. Phys. 73 (1987), 1302-1312.
- Bazhanov V.V., Stroganov Yu.G., Trigonometric and $S_{n}$ symmetric solutions of triangle equations with variables on the faces, Nuclear Phys. B 205 (1982), 505-526.
- Belavin A.A., Drinfeld V.G., Solutions of the classical Yang-Baxter equation for simple Lie algebras, Funct. Anal. Appl. 16 (1982), 159-180.
- Belavin A.A., Drinfeld V.G., The classical Yang-Baxter equation for simple Lie algebras, Funct. Anal. Appl. 17 (1983), 220-221.
- Belavin A.A., Drinfeld V.G., Triangle equations and simple Lie algebras, Class. Rev. Math. Math. Phys., Vol. 1, Harwood Academic Publishers, Amsterdam, 1998.
- Beltrametti M., Robbiano L., Introduction to the theory of weighted projective spaces, Expo. Math. 4 (1986), 111-162.
- Benini F., Cremonesi S., Partition functions of $\mathcal{N}=(2,2)$ gauge theories on $S^2$ and vortices, Comm. Math. Phys. 334 (2015), 1483-1527, arXiv:1206.2356.
- Benini F., Eager R., Hori K., Tachikawa Y., Elliptic genera of two-dimensional $\mathcal{N}=2$ gauge theories with rank-one gauge groups, Lett. Math. Phys. 104 (2014), 465-493, arXiv:1305.0533.
- Benini F., Eager R., Hori K., Tachikawa Y., Elliptic genera of 2d $\mathcal{N}=2$ gauge theories, Comm. Math. Phys. 333 (2015), 1241-1286, arXiv:1308.4896.
- Bobev N., Pilch K., Warner N.P., Supersymmetric Janus solutions in four dimensions, J. High Energy Phys. 2014 (2014), no. 6, 058, 49 pages, arXiv:1311.4883.
- Boujakhrout Y., Saidi E.H., Ahl Laamara R., Drissi L.B., Embedding integrable superspin chain in string theory, Nuclear Phys. B 990 (2023), 116156, 48 pages, arXiv:2304.03152.
- Brion M., Vergne M., Arrangement of hyperplanes. I. Rational functions and Jeffrey-Kirwan residue, Ann. Sci. 'Ecole Norm. Sup. 32 (1999), 715-741, arXiv:math/9903178.
- Bullimore M., Dimofte T., Gaiotto D., Hilburn J., Boundaries, mirror symmetry, and symplectic duality in 3d $\mathcal{N}=4$ gauge theory, J. High Energy Phys. 2016 (2016), no. 10, 108, 191 pages, arXiv:1603.08382.
- Bullimore M., Kim H.-C., Lukowski T., Expanding the Bethe/Gauge dictionary, J. High Energy Phys. 2017 (2017), no. 11, 055, 48 pages, arXiv:1708.00445.
- Bullimore M., Zhang D., 3d $\mathcal{N} = 4$ gauge theories on an elliptic curve, SciPost Phys. 13 (2022), 005, 91 pages, arXiv:2109.10907.
- Bykov D., Zinn-Justin P., Higher spin $\mathfrak{sl}_2$ $R$-matrix from equivariant (co)homology, Lett. Math. Phys. 110 (2020), 2435-2470, arXiv:1904.11107.
- Chernyak D., Leurent S., Volin D., Completeness of Wronskian Bethe equations for rational $\mathfrak{gl}_{\rm m|n}$ spin chains, Comm. Math. Phys. 391 (2022), 969-1045, arXiv:2004.02865.
- Chung H.-J., Yoshida Y., Topologically twisted SUSY gauge theory, gauge-Bethe correspondence and quantum cohomology, J. High Energy Phys. 2019 (2019), no. 2, 052, 33 pages, arXiv:1605.07165.
- Closset C., Cremonesi S., Park D.S., The equivariant A-twist and gauged linear sigma models on the two-sphere, J. High Energy Phys. 2015 (2015), no. 6, 076, 110 pages, arXiv:1504.06308.
- Costello K., Supersymmetric gauge theory and the Yangian, arXiv:1303.2632.
- Costello K., Integrable lattice models from four-dimensional field theories, in String-Math 2013, Proc. Sympos. Pure Math., Vol. 88, American Mathematical Society, Providence, RI, 2014, 3-23, arXiv:1308.0370.
- Costello K., Witten E., Yamazaki M., Gauge theory and integrability, I, ICCM Not. 6 (2018), 46-119, arXiv:1709.09993.
- Costello K., Witten E., Yamazaki M., Gauge theory and integrability, II, ICCM Not. 6 (2018), 120-146, arXiv:1802.01579.
- Costello K., Yagi J., Unification of integrability in supersymmetric gauge theories, Adv. Theor. Math. Phys. 24 (2020), 1931-2041, arXiv:1810.01970.
- Costello K., Yamazaki M., Gauge theory and integrability, III, arXiv:1908.02289.
- Crew S., Zhang D., Zhao B., Boundaries & localisation with a topological twist, J. High Energy Phys. 2023 (2023), no. 10, 093, 45 pages, arXiv:2306.16448.
- de Boer J., Hori K., Oz Y., Dynamics of ${\mathcal{N}=2}$ supersymmetric gauge theories in three-dimensions, Nuclear Phys. B 500 (1997), 163-191, arXiv:hep-th/9703100.
- de Boer J., Hori K., Oz Y., Yin Z., Branes and mirror symmetry in $\mathcal{N}=2$ supersymmetric gauge theories in three dimensions, Nuclear Phys. B 502 (1997), 107-124, arXiv:hep-th/9702154.
- Dedushenko M., $R$-matrices and interfaces in gauge theories in diverse dimensions, Simons Summer Workshop, 2021, video available at https://scgp.stonybrook.edu/video/video.php?id=4863.
- Dedushenko M., Remarks on Berry connection in QFT, anomalies, and applications, SciPost Phys. 15 (2023), 167, 42 pages, arXiv:2211.15680.
- Dedushenko M., Nekrasov N., Interfaces and quantum algebras, I: Stable envelopes, J. Geom. Phys. 194 (2023), 104991, 74 pages, arXiv:2109.10941.
- Dedushenko M., Nekrasov N., Interfaces and quantum algebras, II: Cigar partition function, arXiv:2306.16434.
- D'Hoker E., Estes J., Gutperle M., Krym D., Janus solutions in M-theory, J. High Energy Phys. 2009 (2009), no. 6, 018, 17 pages, arXiv:0904.3313.
- Dimofte T., Gaiotto D., Paquette N.M., Dual boundary conditions in 3d SCFT's, J. High Energy Phys. 2018 (2018), no. 5, 060, 99 pages, arXiv:1712.07654.
- Ding X.-M., Zhang T., Bethe/Gauge correspondence for ABCDEFG-type 3d gauge theories, J. High Energy Phys. 2023 (2023), no. 4, 036, 33 pages, arXiv:2303.03102.
- Ding X.-M., Zhang T., Bethe/Gauge correspondence for linear quiver theories with ABCD gauge symmetry and spin chains, Nuclear Phys. B 991 (2023), 116222, 27 pages, arXiv:2303.04575.
- Dinkins H., 3d mirror symmetry of the cotangent bundle of the full flag variety, Lett. Math. Phys. 112 (2022), 100, 31 pages, arXiv:2011.08603.
- Dinkins H., Elliptic stable envelopes of affine type-A quiver varieties, Int. Math. Res. Not. 2023 (2023), 13426-13476, arXiv:2107.09569.
- Elitzur S., Giveon A., Kutasov D., Branes and $\mathcal{N}=1$ duality in string theory, Phys. Lett. B 400 (1997), 269-274, arXiv:hep-th/9702014.
- Elitzur S., Giveon A., Kutasov D., Rabinovici E., Schwimmer A., Brane dynamics and ${\mathcal{N}=1}$ supersymmetric gauge theory, Nuclear Phys. B 505 (1997), 202-250, arXiv:hep-th/9704104.
- Faddeev L.D., How algebraic Bethe ansatz works for integrable model, in Fifty Years of Mathematical Physics, World Sci. Ser. 21st Century Math., Vol. 2, World Scientific Publishing, Hackensack, NJ, 2016, 370-439, arXiv:hep-th/9605187.
- Felder G., Elliptic quantum groups, in 11th International Conference on Mathematical Physics, International Press, Boston, 1994, 211-218, arXiv:hep-th/9412207.
- Felder G., Conformal field theory and integrable systems associated to elliptic curves, in Proceedings of the International Congress of Mathematicians, Birkhäuser, Basel, 1995, 1247-1255, arXiv:2007.09094.
- Felder G., Rimányi R., Varchenko A., Elliptic dynamical quantum groups and equivariant elliptic cohomology, SIGMA 14 (2018), 132, 41 pages, arXiv:1702.08060.
- Foda O., Manabe M., Nested coordinate Bethe wavefunctions from the Bethe/Gauge correspondence, J. High Energy Phys. 2019 (2019), no. 11, 036, 34 pages, arXiv:1907.00493.
- Frappat L., Sciarrino A., Sorba P., Dictionary on Lie algebras and superalgebras, Academic Press, Inc., San Diego, CA, 2000, arXiv:hep-th/9607161.
- Friedman R., Morgan J.W., Witten E., Principal $G$-bundles over elliptic curves, Math. Res. Lett. 5 (1998), 97-118, arXiv:alg-geom/9707004.
- Galakhov D., Li W., Yamazaki M., Gauge/Bethe correspondence from quiver BPS algebras, J. High Energy Phys. 2022 (2022), no. 11, 119, 77 pages, arXiv:2206.13340.
- Ganter N., The elliptic Weyl character formula, Compos. Math. 150 (2014), 1196-1234, arXiv:1206.0528.
- Gepner D.J., Homotopy topoi and equivariant elliptic cohomology, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 2006.
- Ginzburg V., Kapranov M., Vasserot E., Elliptic algebras and equivariant elliptic cohomology, arXiv:q-alg/9505012.
- Gran U., Gutowski J., Papadopoulos G., Geometry of all supersymmetric four-dimensional ${\mathcal{N}=1}$ supergravity backgrounds, J. High Energy Phys. 2008 (2008), no. 6, 102, 16 pages, arXiv:0802.1779.
- Grojnowski I., Delocalised equivariant elliptic cohomology (with an Introduction by Matthew Ando and Haynes Miller), in Elliptic Cohomology: Geometry, Applications, and Higher Chromatic Analogues, London Math. Soc. Lecture Note Ser., Vol. 342, Cambridge University Press, Cambridge, 2007, 114-121.
- Harada M., Proudfoot N., Properties of the residual circle action on a hypertoric variety, Pacific J. Math. 214 (2004), 263-284, arXiv:math.DG/0207012.
- Hausel T., Sturmfels B., Toric hyperKähler varieties, Doc. Math. 7 (2002), 495-534, arXiv:math.AG/0203096.
- Hori K., Katz S., Klemm A., Pandharipande R., Thomas R., Vafa C., Vakil R., Zaslow E., Mirror symmetry, Clay Math. Monogr., Vol. 1, American Mathematical Society, Providence, RI, 2003.
- Ishtiaque N., Moosavian S.F., Raghavendran S., Yagi J., Superspin chains from superstring theory, SciPost Phys. 13 (2022), 083, 60 pages, arXiv:2110.15112.
- Ishtiaque N., Zhou Y., Line operators in 4d Chern-Simons theory and Cherkis bows, SciPost Phys. 16 (2024), 052, 44 pages, arXiv:2211.00049.
- Jeffrey L.C., Kirwan F.C., Localization for nonabelian group actions, Topology 34 (1995), 291-327, arXiv:alg-geom/9307001.
- Jeong S., Lee N., Nekrasov N., Intersecting defects in gauge theory, quantum spin chains, and Knizhnik-Zamolodchikov equations, J. High Energy Phys. 2021 (2021), no. 10, 120, 82 pages, arXiv:2103.17186.
- Jeong S., Nekrasov N., Opers, surface defects, and Yang-Yang functional, Adv. Theor. Math. Phys. 24 (2020), 1789-1916, arXiv:1806.08270.
- Jimbo M., Quantum $R$ matrix for the generalized Toda system, Comm. Math. Phys. 102 (1986), 537-547.
- Jockers H., Mayr P., A 3d gauge theory/quantum $K$-theory correspondence, Adv. Theor. Math. Phys. 24 (2020), 327-457, arXiv:1808.02040.
- Jockers H., Mayr P., Ninad U., Tabler A., BPS indices, modularity and perturbations in quantum $K$-theory, J. High Energy Phys. 2022 (2022), no. 2, 044, 63 pages, arXiv:2106.07670.
- Kanno H., Sugiyama K., Yoshida Y., Equivariant ${\rm U}(N)$ Verlinde algebra from Bethe/gauge correspondence, J. High Energy Phys. 2019 (2019), no. 2, 097, 38 pages, arXiv:1806.03039.
- Kapustin A., Willett B., Wilson loops in supersymmetric Chern-Simons-Matter theories and duality, arXiv:1302.2164.
- Khoroshkin S.M., Tolstoy V.N., Universal $R$-matrix for quantized (super)algebras, Comm. Math. Phys. 141 (1991), 599-617.
- Kimura T., Zhu R.-D., Bethe/gauge correspondence for SO/Sp gauge theories and open spin chains, J. High Energy Phys. 2021 (2021), no. 3, 227, 33 pages, arXiv:2012.14197.
- King A.D., Moduli of representations of finite-dimensional algebras, Q. J. Math. 45 (1994), 515-530.
- Korepin V.E., Bogoliubov N.M., Izergin A.G., Quantum inverse scattering method and correlation functions, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 1993.
- Kulish P.P., Integrable graded magnets, J. Sov. Math. 35 (1986), 2648-2662.
- Kulish P.P., Reshetikhin N.Yu., Sklyanin E.K., Yang-Baxter equations and representation theory. I, Lett. Math. Phys. 5 (1981), 393-403.
- Kulish P.P., Sklyanin E.K., Solutions of the Yang-Baxter equation, J. Sov. Math. 19 (1982), 1596-1620.
- Lascoux A., Syzygies des variétés déterminantales, Adv. Math. 30 (1978), 202-237.
- Lee N., Nekrasov N., Quantum spin systems and supersymmetric gauge theories. Part I, J. High Energy Phys. 2021 (2021), no. 3, 093, 86 pages, arXiv:2009.11199.
- Leites D.A., Serganova V.V., Solutions of the classical Yang-Baxter equation for simple superalgebras, Theoret. and Math. Phys. 58 (1984), 16-24.
- Looijenga E., Root systems and elliptic curves, Invent. Math. 38 (1976), 17-32.
- Lurie J., A survey of elliptic cohomology, in Algebraic Topology: The Abel Symposium 2007, Abel Symp., Vol. 4, Springer, Berlin, 2009, 219-277.
- Maulik D., Okounkov A., Quantum groups and quantum cohomology, Astérisque 408 (2019), ix+209 pages, arXiv:1211.1287.
- McGerty K., Nevins T., Kirwan surjectivity for quiver varieties, Invent. Math. 212 (2018), 161-187, arXiv:1610.08121.
- McGuire J.B., Study of exactly soluble one-dimensional $N$-body problems, J. Math. Phys. 5 (1964), 622-636.
- Morrison D.R., Plesser M.R., Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nuclear Phys. B 440 (1995), 279-354, arXiv:hep-th/9412236.
- Mumford D., Ramanujam C.P., Manin J.I., Abelian varieties, Vol. 5, Oxford University Press, Oxford, 1974.
- Nakajima H., Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), 365-416.
- Nakajima H., Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), 515-560.
- Nakajima H., Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), 145-238, arXiv:math/9912158.
- Neguţ A., Quantum loop groups and $K$-theoretic stable envelopes, arXiv:2303.12041.
- Nekrasov N., Bethe states as defects in gauge theories, Simons Center for Geometry and Physics Weekly Talk, 2013, video available at http://scgp.stonybrook.edu/video_portal/video.php?id=1775.
- Nekrasov N., Bethe wavefunctions from glsm via Bethe/Gauge correspondence, Workshop Gauged Sigma-Models in Two Dimensions, Simons Center for Geometry and Physics, 2014, video available at http://scgp.stonybrook.edu/video_portal/video.php?id=1360.
- Nekrasov N., Superspin chains and supersymmetric gauge theories, J. High Energy Phys. 2019 (2019), no. 3, 102, 16 pages, arXiv:1811.04278.
- Nekrasov N., Okounkov A., Membranes and sheaves, Algebr. Geom. 3 (2016), 320-369, arXiv:1404.2323.
- Nekrasov N., Pestun V., Shatashvili S., Quantum geometry and quiver gauge theories, Comm. Math. Phys. 357 (2018), 519-567, arXiv:1312.6689.
- Nekrasov N., Shatashvili S., Quantum integrability and supersymmetric vacua, Prog. Theor. Phys. Suppl. 177 (2009), 105-119, arXiv:0901.4748.
- Nekrasov N., Shatashvili S., Supersymmetric vacua and Bethe ansatz, Nuclear Phys. B Proc. Suppl. 192 (2009), 91-112, arXiv:0901.4744.
- Nekrasov N., Shatashvili S., Bethe/gauge correspondence on curved spaces, J. High Energy Phys. 2015 (2015), no. 1, 100, 16 pages, arXiv:1405.6046.
- Nekrasov N., Witten E., The omega deformation, branes, integrability and Liouville theory, J. High Energy Phys. 2010 (2010), no. 9, 092, 82 pages, arXiv:1002.0888.
- Okounkov A., Lectures on K-theoretic computations in enumerative geometry, in Geometry of Moduli Spaces and Representation Theory, IAS/Park City Math. Ser., Vol. 24, American Mathematical Society, Providence, RI, 2017, 251-380, arXiv:1512.07363.
- Okounkov A., Enumerative geometry and geometric representation theory, in Algebraic Geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., Vol. 97, American Mathematical Society, Providence, RI, 2018, 419-457, arXiv:1701.00713.
- Okounkov A., Nonabelian stable envelopes, vertex functions with descendents, and integral solutions of $q$-difference equations, arXiv:2010.13217.
- Okounkov A., Inductive construction of stable envelopes, Lett. Math. Phys. 111 (2021), 141, 56 pages, arXiv:2007.09094.
- Okuda S., Yoshida Y., Gauge/Bethe correspondence on $S^1 \times \Sigma_h$ and index over moduli space, arXiv:1501.03469.
- Orlando D., A stringy perspective on the quantum integrable model/gauge correspondence, arXiv:1310.0031.
- Orlando D., Reffert S., Relating gauge theories via gauge/Bethe correspondence, J. High Energy Phys. 2010 (2010), no. 10, 071, 30 pages, arXiv:1005.4445.
- Orlando D., Reffert S., Twisted masses and enhanced symmetries: the A&D series, J. High Energy Phys. 2012 (2012), no. 2, 060, 17 pages, arXiv:1111.4811.
- Ragoucy E., Satta G., Analytical Bethe ansatz for closed and open $\mathfrak{gl}(\mathcal{M}|\mathcal{N})$ super-spin chains in arbitrary representations and for any Dynkin diagram, J. High Energy Phys. 2007 (2007), no. 9, 001, 40 pages, arXiv:0706.3327.
- Razumov A.V., Khoroshkin-Tolstoy approach to quantum superalgebras, Teoret. and Math. Phys. 215 (2023), 560-585, arXiv:2210.12721.
- Reshetikhin N.Yu., The spectrum of the transfer matrices connected with Kac-Moody algebras, Lett. Math. Phys. 14 (1987), 235-246.
- Rimányi R., Rozansky L., New quiver-like varieties and Lie superalgebras, Comm. Math. Phys. 400 (2023), 341-370, arXiv:2105.11499.
- Rimányi R., Shou Y., Bow varieties -- geometry, combinatorics, characteristic classes, arXiv:2012.07814.
- Rimányi R., Smirnov A., Varchenko A., Zhou Z., Three-dimensional mirror self-symmetry of the cotangent bundle of the full flag variety, SIGMA 15 (2019), 093, 22 pages, arXiv:1906.00134.
- Rimányi R., Smirnov A., Zhou Z., Varchenko A., Three-dimensional mirror symmetry and elliptic stable envelopes, Int. Math. Res. Not. 2022 (2022), 10016-10094, arXiv:1902.03677.
- Rimányi R., Tarasov V., Varchenko A., Partial flag varieties, stable envelopes, and weight functions, Quantum Topol. 6 (2015), 333-364, arXiv:1212.6240.
- Rimányi R., Tarasov V., Varchenko A., Trigonometric weight functions as $K$-theoretic stable envelope maps for the cotangent bundle of a flag variety, J. Geom. Phys. 94 (2015), 81-119, arXiv:1411.0478.
- Rimányi R., Tarasov V., Varchenko A., Elliptic and $K$-theoretic stable envelopes and Newton polytopes, Selecta Math. (N.S.) 25 (2019), 16, 43 pages, arXiv:1705.09344.
- Rimányi R., Weber A., Elliptic classes of Schubert varieties via Bott-Samelson resolution, J. Topol. 13 (2020), 1139-1182, arXiv:1904.10852.
- Rimányi R., Weber A., Elliptic classes on langlands dual flag varieties, Commun. Contemp. Math. 24 (2021), 2150014, 13 pages, arXiv:2007.08976.
- Rosu I., Equivariant elliptic cohomology and rigidity, Amer. J. Math. 123 (2001), 647-677, arXiv:2001.0027.
- Ruan Y., Wen Y., Zhou Z., Quantum $K$-theory of toric varieties, level structures, and 3d mirror symmetry, Adv. Math. 410 (2022), 108770, 39 pages, arXiv:2011.07519.
- Semenov-Tyan-Shanskii M.A., What is a classical $r$-matrix?, Funct. Anal. Appl. 17 (1983), 259-272.
- Sklyanin E.K., Quantum variant of the method of the inverse scattering problem, J. Sov. Math. 19 (1982), 1546-1596.
- Sklyanin E.K., Some algebraic structures connected with the Yang-Baxter equation, Funct. Anal. Appl. 16 (1982), 263-270.
- Sklyanin E.K., Faddeev L.D., Quantum-mechanical approach to the entirely integrable models of the field theory, Dokl. Akad. Nauk SSSR 243 (1978), 1430-1433.
- Sklyanin E.K., Takhtadzhyan L.A., Faddeev L.D., Quantum inverse problem method. I, Theoret. and Math. Phys. 40 (1979), 688-706.
- Smirnov A., Elliptic stable envelope for Hilbert scheme of points in the plane, Selecta Math. (N.S.) 26 (2020), 3, 57 pages, arXiv:1804.08779.
- Smirnov A., Zhou Z., 3d mirror symmetry and quantum $K$-theory of hypertoric varieties, Adv. Math. 395 (2022), 108081, 61 pages, arXiv:2021.10808.
- Stolin A., On rational solutions of Yang-Baxter equation for $\mathfrak{sl}(n)$, Math. Scand. 69 (1991), 57-80.
- Sutherland B., Exact solution of a two-dimensional model for hydrogen-bonded crystals, Phys. Rev. Lett. 19 (1967), 103-104.
- Szenes A., Vergne M., Toric reduction and a conjecture of Batyrev and Materov, Invent. Math. 158 (2004), 453-495, arXiv:math/0306311.
- Takhtadzhyan L.A., Faddeev L.D., The quantum method of the inverse problem and the Heisenberg $XYZ$ model, Russian Math. Surveys 34 (1979), no. 5, 11-68.
- Tamagni S., Stable envelopes, vortex moduli spaces, and verma modules, arXiv:2311.03462.
- Vafa C., Topological mirrors and quantum rings, in Mirror Symmetry I, Vol. 9, American Mathematical Society, Providence, RI, 1998, 97-120, arXiv:hep-th/9111017.
- Varagnolo M., Quiver varieties and Yangians, Lett. Math. Phys. 53 (2000), 273-283, arXiv:math.QA/0005277.
- Varchenko A.N., Tarasov V.O., Jackson integral representations for solutions of the Knizhnik-Zamolodchikov quantum equation, St. Petersburg Math. J. 6 (1995), 275-313, arXiv:hep-th/9311040.
- Volin D., String hypothesis for $\mathfrak{gl}(m|n)$ spin chains: a particle/hole democracy, Lett. Math. Phys. 102 (2012), 1-29, arXiv:1012.3454.
- Witten E., Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), 661-692.
- Witten E., Elliptic genera and quantum field theory, Comm. Math. Phys. 109 (1987), 525-536.
- Witten E., The index of the Dirac operator in loop space, in Elliptic Curves and Modular Forms in Algebraic Topology (Princeton, NJ, 1986), Lecture Notes in Math., Vol. 1326, Springer, Berlin, 1988, 161-181.
- Witten E., Phases of $\mathcal{N}=2$ theories in two dimensions, Nuclear Phys. B 403 (1993), 159-222, arXiv:hep-th/9301042.
- Witten E., Mirror manifolds and topological field theory, in Mirror Symmetry I, Vol. 9, American Mathematical Society, Providence, RI, 1998, 121-160, arXiv:hep-th/9112056.
- Yang C.N., Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312-1315.
- Yang C.N., $S$-matrix for the one-dimensional $N$-body problem with repulsive or attractive delta-function interaction, Phys. Rev. 168 (1968), 1920-1923.
|
|