Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 100, 30 pages      arXiv:2405.12837      https://doi.org/10.3842/SIGMA.2024.100

Lagrangian Multiform for Cyclotomic Gaudin Models

Vincent Caudrelier a, Anup Anand Singh a and Benoît Vicedo b
a) School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
b) Department of Mathematics, University of York, York YO10 5DD, UK

Received May 28, 2024, in final form November 07, 2024; Published online November 15, 2024

Abstract
We construct a Lagrangian multiform for the class of cyclotomic (rational) Gaudin models by formulating its hierarchy within the Lie dialgebra framework of Semenov-Tian-Shansky and by using the framework of Lagrangian multiforms on coadjoint orbits. This provides the first example of a Lagrangian multiform for an integrable hierarchy whose classical $r$-matrix is non-skew-symmetric and spectral parameter-dependent. As an important by-product of the construction, we obtain a Lagrangian multiform for the periodic Toda chain by choosing an appropriate realisation of the cyclotomic Gaudin Lax matrix. This fills a gap in the landscape of Toda models as only the open and infinite chains had been previously cast into the Lagrangian multiform framework. A slightly different choice of realisation produces the so-called discrete self-trapping (DST) model. We demonstrate the versatility of the framework by coupling the periodic Toda chain with the DST model and by obtaining a Lagrangian multiform for the corresponding integrable hierarchy.

Key words: Lagrangian multiforms; integrable systems; classical $r$-matrix; Gaudin models.

pdf (541 kb)   tex (38 kb)  

References

  1. Abedin R., Maximov S., Stolin A., Generalized classical Yang-Baxter equation and regular decompositions, arXiv:2405.04440.
  2. Adler M., On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-dethinspace Vries type equations, Invent. Math. 50 (1978), 219-248.
  3. Adler M., van Moerbeke P., Completely integrable systems, Euclidean Lie algebras, and curves, Adv. Math. 38 (1980), 267-317.
  4. Avan J., Classical $R$-matrices with general automorphism groups, 1991, Preprint BROWN-HET-781, 15 pages.
  5. Avan J., From rational to trigonometric $R$-matrices, Phys. Lett. A 156 (1991), 61-68.
  6. Avan J., Talon M., Graded $R$-matrices for integrable systems, Nuclear Phys. B 352 (1991), 215-249.
  7. Babelon O., Bernard D., Talon M., Introduction to classical integrable systems, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2003.
  8. Babelon O., Viallet C.-M., Hamiltonian structures and Lax equations, Phys. Lett. B 237 (1990), 411-416.
  9. Bobenko A.I., Suris Yu.B., Integrable systems on quad-graphs, Int. Math. Res. Not. 2002 (2002), 573-611, arXiv:nlin.SI/0110004.
  10. Caudrelier V., Crampé N., Classical $N$-reflection equation and Gaudin models, Lett. Math. Phys. 109 (2019), 843-856, arXiv:1803.09931.
  11. Caudrelier V., Dell'Atti M., Singh A.A., Lagrangian multiforms on coadjoint orbits for finite-dimensional integrable systems, Lett. Math. Phys. 114 (2024), 34, 52 pages, arXiv:2307.07339.
  12. Caudrelier V., Nijhoff F., Sleigh D., Vermeeren M., Lagrangian multiforms on Lie groups and non-commuting flows, J. Geom. Phys. 187 (2023), 104807, 35 pages, arXiv:2204.09663.
  13. Caudrelier V., Stoppato M., Hamiltonian multiform description of an integrable hierarchy, J. Math. Phys. 61 (2020), 123506, 25 pages, arXiv:2004.01164.
  14. Caudrelier V., Stoppato M., Multiform description of the AKNS hierarchy and classical $r$-matrix, J. Phys. A 54 (2021), 235204, 43 pages, arXiv:2010.07163.
  15. Caudrelier V., Stoppato M., Vicedo B., Classical Yang-Baxter equation, Lagrangian multiforms and ultralocal integrable hierarchies, Comm. Math. Phys. 405 (2024), 12, 67 pages, arXiv:2201.08286.
  16. Christiansen P.L., Jørgensen M.F., Kuznetsov V.B., On integrable systems close to the Toda lattice, Lett. Math. Phys. 29 (1993), 165-173.
  17. Eilbeck J.C., Lomdahl P.S., Scott A.C., The discrete self-trapping equation, Phys. D 16 (1985), 318-338.
  18. Flaschka H., The Toda lattice. II. Existence of integrals, Phys. Rev. B 9 (1974), 1924-1925.
  19. Gaudin M., Diagonalisation d'une classe d'Hamiltoniens de spin, J. Physique 37 (1976), 1089-1098.
  20. Gaudin M., La fonction d'onde de Bethe, Collect. Commissariat Énerg. Atom. Sér. Sci., Masson, Paris, 1983.
  21. Kostant B., The solution to a generalized Toda lattice and representation theory, Adv. Math. 34 (1979), 195-338.
  22. Kuznetsov V.B., Salerno M., Sklyanin E.K., Quantum Bäcklund transformation for the integrable DST model, J. Phys. A 33 (2000), 171-189, arXiv:solv-int/9908002.
  23. Lobb S., Nijhoff F., Lagrangian multiforms and multidimensional consistency, J. Phys. A 42 (2009), 454013, 18 pages, arXiv:0903.4086.
  24. Mikhailov A.V., The reduction problem and the inverse scattering method, Phys. D 3 (1981), 73-117.
  25. Nijhoff F.W., Lax pair for the Adler (lattice Krichever-Novikov) system, Phys. Lett. A 297 (2002), 49-58, arXiv:nlin.SI/0110027.
  26. Nijhoff F.W., Lagrangian 3-form structure for the Darboux system and the KP hierarchy, Lett. Math. Phys. 113 (2023), 27, 19 pages, arXiv:2206.14338.
  27. Petrera M., Suris Yu.B., Variational symmetries and pluri-Lagrangian systems in classical mechanics, J. Nonlinear Math. Phys. 24 (2017), 121-145, arXiv:1710.01526.
  28. Petrera M., Vermeeren M., Variational symmetries and pluri-Lagrangian structures for integrable hierarchies of PDEs, Eur. J. Math. 7 (2021), 741-765, arXiv:1906.04535.
  29. Reshetikhin N.Yu., Faddeev L.D., Hamiltonian structures for integrable field theory models, Theoret. and Math. Phys. 56 (1983), 847-862.
  30. Semenov-Tian-Shansky M., Integrable systems: the $r$-matrix approach, Preprint RIMS-1650, Kyoto University, 2008.
  31. Skrypnyk T., New integrable Gaudin-type systems, classical $r$-matrices and quasigraded Lie algebras, Phys. Lett. A 334 (2005), 390-399.
  32. Sleigh D., Nijhoff F., Caudrelier V., A variational approach to Lax representations, J. Geom. Phys. 142 (2019), 66-79, arXiv:1812.08648.
  33. Sleigh D., Nijhoff F., Caudrelier V., Variational symmetries and Lagrangian multiforms, Lett. Math. Phys. 110 (2020), 805-826, arXiv:1906.05084.
  34. Sleigh D., Nijhoff F.W., Caudrelier V., Lagrangian multiforms for Kadomtsev-Petviashvili (KP) and the Gelfand-Dickey hierarchy, Int. Math. Res. Not. 2023 (2023), 1420-1460, arXiv:2011.04543.
  35. Sleigh D., Vermeeren M., Semi-discrete Lagrangian 2-forms and the Toda hierarchy, J. Phys. A 55 (2022), 475204, 24 pages, arXiv:2204.13063.
  36. Suris Yu.B., Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms, J. Geom. Mech. 5 (2013), 365-379, arXiv:1212.3314.
  37. Suris Yu.B., Vermeeren M., On the Lagrangian structure of integrable hierarchies, in Advances in Discrete Differential Geometry, Springer, Berlin, 2016, 347-378, arXiv:1510.03724.
  38. Symes W.W., Systems of Toda type, inverse spectral problems, and representation theory, Invent. Math. 59 (1980), 13-51.
  39. Toda T., Waves in nonlinear lattice, Prog. Theor. Phys. 45 (1970), 174-200.
  40. Vermeeren M., Continuum limits of pluri-Lagrangian systems, J. Integrable Syst. 4 (2019), xyy020, 34 pages, arXiv:1706.06830.
  41. Vicedo B., Young C., Cyclotomic Gaudin models: construction and Bethe ansatz, Comm. Math. Phys. 343 (2016), 971-1024, arXiv:1409.6937.
  42. Vicedo B., Young C., Cyclotomic Gaudin models with irregular singularities, J. Geom. Phys. 121 (2017), 247-278, arXiv:1611.09059.
  43. Yoo-Kong S., Lobb S., Nijhoff F., Discrete-time Calogero-Moser system and Lagrangian 1-form structure, J. Phys. A 44 (2011), 365203, 39 pages, arXiv:1102.0663.

Previous article  Next article  Contents of Volume 20 (2024)