Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 103, 6 pages      arXiv:2408.00377      https://doi.org/10.3842/SIGMA.2024.103
Contribution to the Special Issue on Basic Hypergeometric Series Associated with Root Systems and Applications in honor of Stephen C. Milne

Rogers-Ramanujan Type Identities Involving Double Sums

Dandan Chen ab and Siyu Yin a
a) Department of Mathematics, Shanghai University, P.R. China
b) Newtouch Center for Mathematics, Shanghai University, P.R. China

Received August 02, 2024, in final form November 13, 2024; Published online November 19, 2024

Abstract
We prove four new Rogers-Ramanujan-type identities for double series. They follow from the classical Rogers-Ramanujan identities using the constant term method and properties of Rogers-Szegő polynomials.

Key words: Rogers-Ramanujan type identities; sum-product identities; constant term method.

pdf (306 kb)   tex (10 kb)  

References

  1. Andrews G.E., $q$-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Reg. Conf. Ser. Math., Vol. 66, American Mathematical Society, Providence, RI, 1986.
  2. Andrews G.E., Uncu A.K., Sequences in overpartitions, Ramanujan J. 61 (2023), 715-729, arXiv:2111.15003.
  3. Berkovich A., Warnaar S.O., Positivity preserving transformations for $q$-binomial coefficients, Trans. Amer. Math. Soc. 357 (2005), 2291-2351, arXiv:math.CO/0302320.
  4. Cao Z., Wang L., Multi-sum Rogers-Ramanujan type identities, J. Math. Anal. Appl. 522 (2023), 126960, 24 pages, arXiv:2205.12786.
  5. Chern S., Asymmetric Rogers-Ramanujan type identities. I. The Andrews-Uncu conjecture, Proc. Amer. Math. Soc. 151 (2023), 3269-3279, arXiv:2203.15168.
  6. Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia Math. Appl., Vol. 96, Cambridge University Press, Cambridge, 2004.
  7. Nahm W., Conformal field theory, dilogarithms, and three-dimensional manifolds, Adv. Appl. Clifford Algebras 4 (1994), 179-191.
  8. Nahm W., Conformal field theory and the dilogarithm, in XIth International Congress of Mathematical Physics (Paris, 1994), International Press, Cambridge, MA, 1995, 662-667.
  9. Nahm W., Conformal field theory and torsion elements of the Bloch group, in Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 67-132, arXiv:hep-th/0404120.
  10. Rogers L.J., Second memoir on the expansion of certain infinite products, Proc. Lond. Math. Soc. 25 (1893), 318-343.
  11. Wang L., New proofs of some double sum Rogers-Ramanujan type identities, Ramanujan J. 62 (2023), 251-272, arXiv:2203.15572.
  12. Wang L., Explicit forms and proofs of Zagier's rank three examples for Nahm's problem, Adv. Math. 450 (2024), 109743, 46 pages, arXiv:2211.04375.
  13. Zagier D., The dilogarithm function, in Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 3-65.

Previous article  Next article  Contents of Volume 20 (2024)