|
SIGMA 20 (2024), 103, 6 pages arXiv:2408.00377
https://doi.org/10.3842/SIGMA.2024.103
Contribution to the Special Issue on Basic Hypergeometric Series Associated with Root Systems and Applications in honor of Stephen C. Milne
Rogers-Ramanujan Type Identities Involving Double Sums
Dandan Chen ab and Siyu Yin a
a) Department of Mathematics, Shanghai University, P.R. China
b) Newtouch Center for Mathematics, Shanghai University, P.R. China
Received August 02, 2024, in final form November 13, 2024; Published online November 19, 2024
Abstract
We prove four new Rogers-Ramanujan-type identities for double series. They follow from the classical Rogers-Ramanujan identities using the constant term method and properties of Rogers-Szegő polynomials.
Key words: Rogers-Ramanujan type identities; sum-product identities; constant term method.
pdf (306 kb)
tex (10 kb)
References
- Andrews G.E., $q$-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Reg. Conf. Ser. Math., Vol. 66, American Mathematical Society, Providence, RI, 1986.
- Andrews G.E., Uncu A.K., Sequences in overpartitions, Ramanujan J. 61 (2023), 715-729, arXiv:2111.15003.
- Berkovich A., Warnaar S.O., Positivity preserving transformations for $q$-binomial coefficients, Trans. Amer. Math. Soc. 357 (2005), 2291-2351, arXiv:math.CO/0302320.
- Cao Z., Wang L., Multi-sum Rogers-Ramanujan type identities, J. Math. Anal. Appl. 522 (2023), 126960, 24 pages, arXiv:2205.12786.
- Chern S., Asymmetric Rogers-Ramanujan type identities. I. The Andrews-Uncu conjecture, Proc. Amer. Math. Soc. 151 (2023), 3269-3279, arXiv:2203.15168.
- Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia Math. Appl., Vol. 96, Cambridge University Press, Cambridge, 2004.
- Nahm W., Conformal field theory, dilogarithms, and three-dimensional manifolds, Adv. Appl. Clifford Algebras 4 (1994), 179-191.
- Nahm W., Conformal field theory and the dilogarithm, in XIth International Congress of Mathematical Physics (Paris, 1994), International Press, Cambridge, MA, 1995, 662-667.
- Nahm W., Conformal field theory and torsion elements of the Bloch group, in Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 67-132, arXiv:hep-th/0404120.
- Rogers L.J., Second memoir on the expansion of certain infinite products, Proc. Lond. Math. Soc. 25 (1893), 318-343.
- Wang L., New proofs of some double sum Rogers-Ramanujan type identities, Ramanujan J. 62 (2023), 251-272, arXiv:2203.15572.
- Wang L., Explicit forms and proofs of Zagier's rank three examples for Nahm's problem, Adv. Math. 450 (2024), 109743, 46 pages, arXiv:2211.04375.
- Zagier D., The dilogarithm function, in Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 3-65.
|
|