Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 104, 18 pages      arXiv:2407.21605      https://doi.org/10.3842/SIGMA.2024.104

Geometry of Integrable Systems Related to the Restricted Grassmannian

Tomasz Goliński a and Alice Barbora Tumpach b
a) University of Białystok, Ciołkowskiego 1M, 15-245 Białystok, Poland
b) Institut CNRS Pauli, UMI CNRS 2842, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

Received August 01, 2024, in final form November 12, 2024; Published online November 22, 2024

Abstract
A hierarchy of differential equations on a Banach Lie-Poisson space related to the restricted Grassmannian is studied. Flows on the groupoid of partial isometries and on the restricted Grassmannian are described, and a momentum map picture is presented.

Key words: integrable systems; momentum map; Banach Lie-Poisson spaces; partial isometries; restricted Grassmannian; Magri method.

pdf (480 kb)   tex (28 kb)  

References

  1. Alvarado C.D., Chiumiento E., Homogeneous spaces in Hartree-Fock-Bogoliubov theory, J. Geom. Anal. 34 (2024), 334, 48 pages, arXiv:2402.15606.
  2. Beltiţă D., Goliński T., Jakimowicz G., Pelletier F., Banach-Lie groupoids and generalized inversion, J. Funct. Anal. 276 (2019), 1528-1574, arXiv:1802.09430.
  3. Beltiţă D., Ratiu T.S., Symplectic leaves in real Banach Lie-Poisson spaces, Geom. Funct. Anal. 15 (2005), 753-779, arXiv:math.SG/0403345.
  4. Beltiţă D., Ratiu T.S., Tumpach A.B., The restricted Grassmannian, Banach Lie-Poisson spaces, and coadjoint orbits, J. Funct. Anal. 247 (2007), 138-168, arXiv:math.DG/0606327.
  5. Bolsinov A.V., Borisov A.V., Compatible Poisson brackets on Lie algebras, Math. Notes 72 (2002), 10-30.
  6. Bolsinov A.V., Konyaev A.Yu., Matveev V.S., Applications of Nijenhuis geometry IV: Multicomponent KdV and Camassa-Holm equations, Dyn. Partial Differ. Equ. 20 (2023), 73-98, arXiv:2206.12942.
  7. Fomenko A.T., Trofimov V.V., Integrable systems on Lie algebras and symmetric spaces, Adv. Stud. Contemp. Math., Vol. 2, Gordon and Breach Science Publishers, New York, 1988.
  8. Gay-Balmaz F., Ratiu T.S., Tumpach A.B., The Restricted Siegel disc as coadjoint orbit, in Geometric Methods in Physics XL, Trends Math., Springer, Cham, 2024, 59-79, arXiv:2405.13533.
  9. Gay-Balmaz F., Ratiu T.S., Tumpach A.B., The hyperkaehler metric on the cotangent space of an infinite-dimensional symmetric Hilbert domain, in preparation.
  10. Goliński T., Układy całkowalne na przestrzeniach Banacha Lie-Poissona związanych z grassmannianem Sato, Ph.D. Thesis, Politechnika Warszawska, 2009.
  11. Goliński T., Jakimowicz G., Sliżewska A., Banach Lie groupoid of partial isometries over restricted Grassmannian, arXiv:2404.12847.
  12. Goliński T., Odzijewicz A., Some integrable systems on Banach Lie-Poisson space ${\rm i}\mathbb{R}\oplus \mathcal{U}^1_{\textrm{res}}$, in XXVIII Workshop on Geometric Methods in Physics, AIP Conf. Proc., Vol. 1191, American Institute of Physics, 2009, 91-97, arXiv:2311.02449.
  13. Goliński T., Odzijewicz A., Hierarchy of Hamilton equations on Banach Lie-Poisson spaces related to restricted Grassmannian, J. Funct. Anal. 258 (2010), 3266-3294, arXiv:0908.2738.
  14. Goliński T., Tumpach A.B., Integrable system on partial isometries: a finite-dimensional picture, in Geometric Methods in Physics XL, Trends Math., Springer, Cham, 2024, 49-57, arXiv:2311.07412.
  15. Hitchin N.J., Segal G.B., Ward R.S., Integrable systems, Oxf. Grad. Texts Math., Vol. 4, The Clarendon Press, Oxford University Press, New York, 1999.
  16. Kalton N.J., Trace-class operators and commutators, J. Funct. Anal. 86 (1989), 41-74.
  17. Laurent-Gengoux C., Pichereau A., Vanhaecke P., Poisson structures, Grundlehren Math. Wiss., Vol. 347, Springer, Heidelberg, 2013.
  18. Magri F., A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), 1156-1162.
  19. Marsden J.E., Ratiu T.S., Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, 2nd ed., Texts Appl. Math., Vol. 17, Springer, New York, 1999.
  20. Mickelsson J., Current algebras and groups, Plenum Monogr. Nonlinear Phys., Plenum Press, New York, 1989.
  21. Odzijewicz A., Goliński T., Hierarchy of integrable Hamiltonians describing the nonlinear $n$-wave interaction, J. Phys. A 45 (2012), 045204, 14 pages, arXiv:1106.3217.
  22. Odzijewicz A., Ratiu T.S., Banach Lie-Poisson spaces and reduction, Comm. Math. Phys. 243 (2003), 1-54, arXiv:math.SG/0210207.
  23. Odzijewicz A., Ratiu T.S., Extensions of Banach Lie-Poisson spaces, J. Funct. Anal. 217 (2004), 103-125, arXiv:math.SG/0310312.
  24. Odzijewicz A., Ratiu T.S., Induced and coinduced Banach Lie-Poisson spaces and integrability, J. Funct. Anal. 255 (2008), 1225-1272.
  25. Odzijewicz A., Sliżewska A., Banach-Lie groupoids associated to $W^*$-algebras, J. Symplectic Geom. 14 (2016), 687-736.
  26. Pressley A., Segal G., Loop groups, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1986.
  27. Sato M., Sato Y., Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold, in Nonlinear Partial Differential Equations in Applied Science, North-Holland Math. Stud., Vol. 81, North-Holland, Amsterdam, 1983, 259-271.
  28. Schwinger J., Field theory commutators, Phys. Rev. Lett. 3 (1959), 296-297.
  29. Segal G., Wilson G., Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5-65.
  30. Spera M., Valli G., Plücker embedding of the Hilbert space Grassmannian and the CAR algebra, Russian J. Math. Phys. 2 (1994), 383-392.
  31. Tumpach A.B., Hyperkähler structures and infinite-dimensional Grassmannians, J. Funct. Anal. 243 (2007), 158-206, arXiv:math-ph/0511056.
  32. Tumpach A.B., Infinite-dimensional hyperkähler manifolds associated with Hermitian-symmetric affine coadjoint orbits, Ann. Inst. Fourier (Grenoble) 59 (2009), 167-197, arXiv:math-ph/0605032.
  33. Tumpach A.B., On the classification of infinite-dimensional irreducible Hermitian-symmetric affine coadjoint orbits, Forum Math. 21 (2009), 375-393, arXiv:math-ph/0703042.
  34. Tumpach A.B., Banach Poisson-Lie groups and Bruhat-Poisson structure of the restricted Grassmannian, Comm. Math. Phys. 373 (2020), 795-858, arXiv:1805.03292.
  35. Wurzbacher T., Fermionic second quantization and the geometry of the restricted Grassmannian, in Infinite Dimensional Kähler Manifolds (Oberwolfach, 1995), DMV Sem., Vol. 31, Birkhäuser, Basel, 2001, 287-375.

Previous article  Next article  Contents of Volume 20 (2024)