|
SIGMA 20 (2024), 104, 18 pages arXiv:2407.21605
https://doi.org/10.3842/SIGMA.2024.104
Geometry of Integrable Systems Related to the Restricted Grassmannian
Tomasz Goliński a and Alice Barbora Tumpach b
a) University of Białystok, Ciołkowskiego 1M, 15-245 Białystok, Poland
b) Institut CNRS Pauli, UMI CNRS 2842, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
Received August 01, 2024, in final form November 12, 2024; Published online November 22, 2024
Abstract
A hierarchy of differential equations on a Banach Lie-Poisson space related to the restricted Grassmannian is studied. Flows on the groupoid of partial isometries and on the restricted Grassmannian are described, and a momentum map picture is presented.
Key words: integrable systems; momentum map; Banach Lie-Poisson spaces; partial isometries; restricted Grassmannian; Magri method.
pdf (480 kb)
tex (28 kb)
References
- Alvarado C.D., Chiumiento E., Homogeneous spaces in Hartree-Fock-Bogoliubov theory, J. Geom. Anal. 34 (2024), 334, 48 pages, arXiv:2402.15606.
- Beltiţă D., Goliński T., Jakimowicz G., Pelletier F., Banach-Lie groupoids and generalized inversion, J. Funct. Anal. 276 (2019), 1528-1574, arXiv:1802.09430.
- Beltiţă D., Ratiu T.S., Symplectic leaves in real Banach Lie-Poisson spaces, Geom. Funct. Anal. 15 (2005), 753-779, arXiv:math.SG/0403345.
- Beltiţă D., Ratiu T.S., Tumpach A.B., The restricted Grassmannian, Banach Lie-Poisson spaces, and coadjoint orbits, J. Funct. Anal. 247 (2007), 138-168, arXiv:math.DG/0606327.
- Bolsinov A.V., Borisov A.V., Compatible Poisson brackets on Lie algebras, Math. Notes 72 (2002), 10-30.
- Bolsinov A.V., Konyaev A.Yu., Matveev V.S., Applications of Nijenhuis geometry IV: Multicomponent KdV and Camassa-Holm equations, Dyn. Partial Differ. Equ. 20 (2023), 73-98, arXiv:2206.12942.
- Fomenko A.T., Trofimov V.V., Integrable systems on Lie algebras and symmetric spaces, Adv. Stud. Contemp. Math., Vol. 2, Gordon and Breach Science Publishers, New York, 1988.
- Gay-Balmaz F., Ratiu T.S., Tumpach A.B., The Restricted Siegel disc as coadjoint orbit, in Geometric Methods in Physics XL, Trends Math., Springer, Cham, 2024, 59-79, arXiv:2405.13533.
- Gay-Balmaz F., Ratiu T.S., Tumpach A.B., The hyperkaehler metric on the cotangent space of an infinite-dimensional symmetric Hilbert domain, in preparation.
- Goliński T., Układy całkowalne na przestrzeniach Banacha Lie-Poissona związanych z grassmannianem Sato, Ph.D. Thesis, Politechnika Warszawska, 2009.
- Goliński T., Jakimowicz G., Sliżewska A., Banach Lie groupoid of partial isometries over restricted Grassmannian, arXiv:2404.12847.
- Goliński T., Odzijewicz A., Some integrable systems on Banach Lie-Poisson space ${\rm i}\mathbb{R}\oplus \mathcal{U}^1_{\textrm{res}}$, in XXVIII Workshop on Geometric Methods in Physics, AIP Conf. Proc., Vol. 1191, American Institute of Physics, 2009, 91-97, arXiv:2311.02449.
- Goliński T., Odzijewicz A., Hierarchy of Hamilton equations on Banach Lie-Poisson spaces related to restricted Grassmannian, J. Funct. Anal. 258 (2010), 3266-3294, arXiv:0908.2738.
- Goliński T., Tumpach A.B., Integrable system on partial isometries: a finite-dimensional picture, in Geometric Methods in Physics XL, Trends Math., Springer, Cham, 2024, 49-57, arXiv:2311.07412.
- Hitchin N.J., Segal G.B., Ward R.S., Integrable systems, Oxf. Grad. Texts Math., Vol. 4, The Clarendon Press, Oxford University Press, New York, 1999.
- Kalton N.J., Trace-class operators and commutators, J. Funct. Anal. 86 (1989), 41-74.
- Laurent-Gengoux C., Pichereau A., Vanhaecke P., Poisson structures, Grundlehren Math. Wiss., Vol. 347, Springer, Heidelberg, 2013.
- Magri F., A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), 1156-1162.
- Marsden J.E., Ratiu T.S., Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, 2nd ed., Texts Appl. Math., Vol. 17, Springer, New York, 1999.
- Mickelsson J., Current algebras and groups, Plenum Monogr. Nonlinear Phys., Plenum Press, New York, 1989.
- Odzijewicz A., Goliński T., Hierarchy of integrable Hamiltonians describing the nonlinear $n$-wave interaction, J. Phys. A 45 (2012), 045204, 14 pages, arXiv:1106.3217.
- Odzijewicz A., Ratiu T.S., Banach Lie-Poisson spaces and reduction, Comm. Math. Phys. 243 (2003), 1-54, arXiv:math.SG/0210207.
- Odzijewicz A., Ratiu T.S., Extensions of Banach Lie-Poisson spaces, J. Funct. Anal. 217 (2004), 103-125, arXiv:math.SG/0310312.
- Odzijewicz A., Ratiu T.S., Induced and coinduced Banach Lie-Poisson spaces and integrability, J. Funct. Anal. 255 (2008), 1225-1272.
- Odzijewicz A., Sliżewska A., Banach-Lie groupoids associated to $W^*$-algebras, J. Symplectic Geom. 14 (2016), 687-736.
- Pressley A., Segal G., Loop groups, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1986.
- Sato M., Sato Y., Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold, in Nonlinear Partial Differential Equations in Applied Science, North-Holland Math. Stud., Vol. 81, North-Holland, Amsterdam, 1983, 259-271.
- Schwinger J., Field theory commutators, Phys. Rev. Lett. 3 (1959), 296-297.
- Segal G., Wilson G., Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5-65.
- Spera M., Valli G., Plücker embedding of the Hilbert space Grassmannian and the CAR algebra, Russian J. Math. Phys. 2 (1994), 383-392.
- Tumpach A.B., Hyperkähler structures and infinite-dimensional Grassmannians, J. Funct. Anal. 243 (2007), 158-206, arXiv:math-ph/0511056.
- Tumpach A.B., Infinite-dimensional hyperkähler manifolds associated with Hermitian-symmetric affine coadjoint orbits, Ann. Inst. Fourier (Grenoble) 59 (2009), 167-197, arXiv:math-ph/0605032.
- Tumpach A.B., On the classification of infinite-dimensional irreducible Hermitian-symmetric affine coadjoint orbits, Forum Math. 21 (2009), 375-393, arXiv:math-ph/0703042.
- Tumpach A.B., Banach Poisson-Lie groups and Bruhat-Poisson structure of the restricted Grassmannian, Comm. Math. Phys. 373 (2020), 795-858, arXiv:1805.03292.
- Wurzbacher T., Fermionic second quantization and the geometry of the restricted Grassmannian, in Infinite Dimensional Kähler Manifolds (Oberwolfach, 1995), DMV Sem., Vol. 31, Birkhäuser, Basel, 2001, 287-375.
|
|