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Abstract. The global magnificent four theory is the homological version of a maximally
supersymmetric (8 + 1)-dimensional gauge theory on a Calabi–Yau fourfold fibered over
a circle. In the case of a toric fourfold we conjecture the formula for its twisted Witten index.
String-theoretically we count the BPS states of a system of D0-D2-D4-D6-D8-branes on the
Calabi–Yau fourfold in the presence of a large Neveu–Schwarz B-field. Mathematically, we
develop the equivariant K-theoretic DT4 theory, by constructing the four-valent vertex with
generic plane partition asymptotics. Physically, the vertex is a supersymmetric localization
of a non-commutative gauge theory in 8 + 1 dimensions.
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1 Introduction

The discovery [33] of the beautiful connection between the topology of the moduli spaces of
instantons [7] and representation theory of Kac–Moody algebras prompted the search for the
physical explanation of the connection between the seemingly distinct structures: four-dimensional
gauge dynamics on the one hand, and algebraic structures of two-dimensional conformal field
theory, on another. In physics, the moduli spaces of instantons show up in the semi-classical
evaluation of gauge theory correlation functions. Their moduli space topology plays a more
prominent role in (4 + 1)-dimensional theory, where the harmonic differential forms on the
moduli space of instantons represent the internal states of solitonic BPS particles. Gauge
theories beyond four dimensions require ultraviolet completion, which is provided either by
string theory, or, in some cases, by the (2, 0) superconformal theory in six dimensions [49].
Computing index of Dirac operator or its equivariant version, of instanton moduli spaces, proved
quite beneficial in developing the theory of dualities, both in field theory and in string theory.
A useful tool in this endeavour is the equivariant localization with respect to the isometries of
four-dimensional space R4. Equivariant integrals, for example, can be computed exactly as sums
of local contributions of the fixed points (or fixed loci more generally). Unfortunately, this is not
immediately useful in the context of instantons, as the fixed instantons are singular, i.e., they are
not found in the moduli space M but rather on some compactification M̄. Justifying the use of
compactification, e.g., used in [33] led to the noncommutative deformation of gauge theory [45]. In
background independent formulation, the latter can be viewed as matrix model or matrix quantum
mechanics, with a specific type of infinite matrices [50]. Within this background independent
matrix approach, the computation of path integral of gauge theory becomes equivalent to an
infinite-dimensional version of a supersymmetric matrix model. Moreover, using various ideas
from string theory [22], one can generalize these matrix models so as to describe more non-trivial
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spatial backgrounds, such as ALE spaces, conifolds or K3 manifolds [35]. One can observe, that
the intuition of quantum field theory on curved spacetime, in particular the cluster decomposition,
which is a useful method of computations in topological field theories, persists in the matrix
model approach [37].

One of the fruitful ideas in mathematics is the program of complexification [1], which prompts
an eight-dimensional generalization of instanton enumeration. An early attempt to formulate such
a problem was done in [5] in 8 and in [6] in 8+1 dimensions but, without any understanding of the
geometry of the moduli space of generalized instantons let alone its compactification, the progress
was minimal. A recent advance in this direction was achieved with the introduction [40] of the
extension of the ADHM construction of instanton moduli space, which led to a generalization [41]
of instanton partition functions. Enumeration of instantons in 4 or 4 + 1 dimensions leads to the
computation of sums over Young diagrams, or N -tuples of Young diagrams for rank N theories.
The corresponding generalization to 8 or 8 + 1 dimensions is a sum over four-dimensional Young
diagrams, or solid partitions. The rank N theories, studied in [43] on R8 × S1, reduce to the
summations of N -tuples of finite size solid partitions.

The goal of this paper is to analyze the theory [43] in the more global setting. We would like
to study the super-Yang–Mills theory in maximal number of space-time dimensions. Classically,
super-Yang–Mills theory can be defined in ten dimensions, with sixteen real supercharges generat-
ing the corresponding supersymmetry. However, quantum mechanically super-Yang–Mills in ten
dimensions suffers from anomalies, and string theory completion in ten dimensions is only possible
for a very limited class of gauge groups. In nine dimensions one can use D8-branes of IIA string
theory to engineer more general theories. We would like to study the states of the corresponding
theory when D8 branes wrap a Calabi–Yau fourfold. The approach taken in this paper follows the
combinatorics [24, 29, 30] of equivariant Donaldson–Thomas (DT3) and equivariant K-theoretic
Donaldson–Thomas theory (kDT3), representing (6+ 1)-dimensional partially twisted maximally
supersymmetric Yang–Mills theory on complex threefolds fibered over a circle [42].

The global versions of the magnificent four theory have been recently studied in numerous
interesting publications, see [26] for a review. Both mathematical and physical communities
explore this terra incognita. The main motivation, from our perspective, is to gain new evidence
for M -theory, extend the Gromov–Witten/Donaldson–Thomas correspondence and theory of
Kähler gravity [24, 29, 30]. There are of course proper mathematical motivations. The work [9,
11, 12, 16, 46] on mathematical foundations of the four-dimensional version of Donaldson–
Thomas theory DT4, the concrete proposals for signs [13, 31] (as we recall below, the orientation
of the moduli spaces Mζ is a nontrivial issue) are a small selection of recent advances. As
in the lower-dimensional cases, the extension to orbifolds is the first step in the physical
approach [10, 14, 23, 27, 51]. Another version of the global magnificent four theory is the theory
on a union of transversal or intersecting complex surfaces inside a Calabi–Yau fourfold [44], or
a similar arrangement of hypersurfaces [48].

Another physically motivated idea is to view the higher-dimensional instantons as holomorphic
maps (quasimaps) of complex curves into the moduli spaces of instantons on spaces of two
dimension less, cf. [2, 8, 28]. One can also study the four-dimensional analogues of holomorphic
maps: the solutions of Seiberg–Witten equations describing BPS configurations in (real) four-
dimensional theory with the gauge group U(k) with the matter fields furnishing the ADHM data
for charge k instantons with gauge group U(N). One can also use the recent studies of the spaces
of holomorphic maps of complex surfaces to Kähler manifolds [17]. In our construction below,
we combine all these ingredients.

Let X be a toric Calabi–Yau four-fold (smooth quasi-projective toric variety), with Kähler
form ω and top holomorphic form Ω. Let F be the curvature of a connection on a complex vector
bundle E over X, with prescribed Chern character ch(E), satisfying [18]

F 0,2
+ := F 0,2 + ⋆̄

(
Ω ∧ F 0,2

)
= 0, F.ω = 0, (1.1)
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where we split ∧2(T ∗X⊗C) = ⟨ω⟩⊕∧1,1
0 ⊕∧2,0⊕∧0,2. In the decomposition ∧2(T ∗X) = ∧7⊕∧21

into Spin(7) irreps, equation (1.1) corresponds to the projection π7(F ) = 0. Let M be the framed
moduli space of solutions to equation (1.1) modulo unitary gauge equivalence. Actually, we work
in non-commutative gauge theory,1 and denote the corresponding moduli space by Mζ .

Neglecting torsion, the central charge of a bound state of D-branes in type IIA string theory
near large radius is

Z =

∫
X
e2πi(B+iω) ch(E)Γ̂X , (1.2)

where the class Γ̂X =
∏4

i=1 Γ(1 + δi) is built out of Chern roots δi of TX and it provides
a square-root of A-roof and Todd classes [25]. We consider one D8-brane, which is infinitely
massive and acts as background, see refs. [20, 24, 29, 30, 43], as well as one D8-brane. We can
also turn on flat Ramond–Ramond background forms Cp+1 with one leg along S1, provided they
are compatible with toric symmetries, and weigh a given instanton configuration by

u := exp

[
−
∫
X×S1

(
ds

gs
e2πi(B+iω) + i

4∑
n=0

C2n+1

)
ch(E)Γ̂X

]
, (1.3)

where gs is the string coupling and ds a local coordinate on S1. This u helps keep track of Chern
classes ci = ci(E). In the following, we only turn on C1 and define −p = exp

∫
S1

ds
gs

+ iC1.

Definition 1.1. The Donaldson–Thomas partition function is defined in equivariant2 K-theory
as a generating sum of integrals over virtual fundamental classes

Z :=
∑

(c1,c2,c3,c4)

u

∫
[Mζ ]vir

Â ch∧•
µ̃E, (1.4)

where the matter bundle E is the kernel of Dirac operator coupled to the gauge bundle and it
plays the role of insertions in Gromov–Witten theory ∧•

µ̃E :=
∑rkE

i=0 (−µ̃)i ∧i (E).

Remark 1.2. Physically, Z is the twisted Witten index of a supersymmetric gauge theory
living on the D8-brane, up to an overall perturbative factor. Equivalently, it is a sum of
twisted Witten indices of supersymmetric quantum mechanical models counting bound states
of D0-D2-D4-D6-D8-branes on X, in the limit of large volume and large B-field.

Remark 1.3. Let Ovir be the virtual structure sheaf on Mζ , which exist thanks to Oh–
Thomas [46], and E the universal sheaf,3 i.e., the sheaf on Mζ ×X, with π the projection to
the first factor. The algebro-geometric counterpart of our Z is the holomorphic Euler characte-
ristic χ

(
Mζ , ̂∧•

µ̃(π∗E)⊗Ovir
)
where hat means twist by the square root of determinant as in

Nekrasov–Okounkov [42].

The main difficulty is to find an orientation on Mζ . One has to provide at least an orientation
at the fixed points, so that the integral can be defined via equivariant localization.4

Our strategy is to require covariance of every building block, under the assumption that the
sign choice is essentially unique (up to an overall sign) and therefore if we can produce a square
root that is also covariant, then it must be the correct answer. This is related to the fact that
the sign induced by the orientation choice is well defined [46], so that the choice of both a sign
and of a square-root of virtual tangent bundle is essentially canonical [31].

1Otherwise, Derrick’s theorem would apply. Here we mean gauge theory in the sense of Seiberg and Witten,
namely we investigate open strings on X, in the limit of large B-field. This is what is expected to produce the
higher derivative regularization of PDEs (1.1), with the B-field corrections. The B-field parameters are denoted
by ζ.

2Equivariant with respect to the maximal torus U(1)3 of SU(4) holonomy of X, as well as the mass parameter µ̃.
3We previously denoted by the same letter the restriction of E to X × {m}, for some m ∈ Mζ .
4The paper [15] mentions the relevance of DT4 theory to square root Euler classes.
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2 Background material

2.1 Partitions

A solid partition K is a collection of non-negative integers Ki,j,k labeled by triples of positive
integers, obeying inequalities

K =
{
Ki,j,k | Ki,j,k ≥ max(0,Ki+1,j,k, Ki,j+1,k,Ki,j,k+1) ∀(i, j, k) ∈ Z3

>0

}
.

Its size is |K| =
∑

i,j,k Ki,j,k. Equivalently, we can represent it by its 4d diagram as

K =
{
(i, j, k,m) ∈ Z4

>0 | m ≤ Ki,j,k

}
.

Its character is

chK(q1, q2, q3, q4) =
∑

(k1,k2,k3,k4)∈K

4∏
a=1

qka−1
a ∈ Z[q1, q2, q3, q4].

In the present setup (local theory) it’s unambiguous to identify a partition with its character.
(Later in Section 3, when we work on a toric variety (global theory), we must keep track of the
variables used to used to compute the character, which depend on the fixed point as defined in
Section 2.4.) Given any partition ρ, we denote by ρ∗ its character evaluated at the conjugated
variables q∗a = q−1

a . Solid partitions are in one-to-one correspondence with finite-codimension
monomial ideals I ⊂ C[z1, z2, z3, z4],

K =

{
(k1, . . . , k4) ∈ Z4

>0 |
4∏

a=1

zka−1
a ̸∈ I

}
≈ C[z1, z2, z3, z4]/I, (2.1)

where the ≈ symbol means that the set
{∏4

a=1 z
ka−1
a | (k1, . . . , k4) ∈ K

}
provides a vector space

basis of C[z1, . . . , z4]/I. The codimension of I equals the size of K. We define partitions of
infinite size by allowing any monomial ideal in (2.1). Their character is a formal power series
in Z[[q1, q2, q3, q4]].

A similar construction can be performed in any dimension, in particular we will use C[q1, q2]
(Young diagrams) and C[q1, q2, q3] (plane partitions).

A colored partition (plane partition, solid partition) is a vector of partitions (plane partitions,
solid partitions).

2.1.1 Taylor resolution5

Consider a monomial ideal I ⊂ R = C[x1, . . . , xn], with generators m1, . . . ,ms (it is important
that s is finite for a monomial ideal). For any ordered T ⊆ {1, . . . , s}, let mT := lcm{mi|i ∈ T},
the least common multiple of a subset of generators. Consider the simplex F = (Ft), where
Ft =

⊕
|T |=tRmT , for s ≥ t > 1, has a formal basis {eT | |T | = t}, and the differential

d(eT ) :=
∑

T ′=T\{ik}

(−1)k
mT

mT ′
eT ′ ,

where T = {i1, . . . , i|T |}. This gives a free resolution of I, with all the good properties except
that it may be non-minimal. For example, the character is

ch I =

s∑
t=1

(−1)t+1 chFt.

5This section lies somewhat outside the main line of development of this work.
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2.2 Characters and regularizations

Definition 2.1. For some finite set S ⊂ Zp, we call a Laurent polynomial

A(x1, . . . , xp) =
∑
n⃗∈S

An⃗x
n1
1 xn2

2 · · ·xnp
p

movable if it has no constant term, i.e., A0 = 0. (We call A0 its unmovable, a.k.a. fixed, part.)
Let us define the mobility of A by #A = limx→1(A−A0).

Definition 2.2. The size of a Laurent polynomial A ∈ Z
[
x±1
1 , . . . , x±1

p

]
is |A| = limall x→1A,

which can be negative.

Remark 2.3. Clearly we have |A| = #A+A0, as well as #A =
∑

n̸⃗=0An⃗.

Definition 2.4. We call χ ∈ Z[[q1, q2, q3, q4]] a pure character if χ ∈ Z≥0[[q1, q2, q3, q4]].

For A ⊆ {1, 2, 3, 4}, let PA =
∏

a∈A(1− qa).

Let K̃ be a (possibly infinite) solid partition, with finite

ñabc = lim
qa→1,qb→1,qc→1

PabcK̃, a < b < c.

Let ñ = (ñ1, . . . , ñ4) := (ñ234, . . . , ñ123) and qñ := qñ1
1 qñ2

2 qñ3
3 qñ4

4 , where we identify the partition
with character ña(qa) = 1 + qa + · · ·+ qña−1

a with its size ña.
Change variables to

K = q−ñ

(
K̃ − 1− qñ

P1234

)
(2.2)

so that limqa,qb,qc→1 PabcK = 0, a < b < c. Its asymptotics determine partitions

πa(q1, . . . , q̂a, . . . , q4) = lim
qa→1

PaK(q1, . . . , q4),

where hat means removal, and for a ̸= b

λab(q1, . . . , q̂a, . . . , q̂b, . . . , q4) = lim
qa,qb→1

PabK(q1, . . . , q4).

Denote π = (π1, . . . , π4).

Remark 2.5. Equivalently, if K is defined by a monomial ideal I, then

πa =

{(
k1, . . . , k̂a, . . . , k4

)
∈ Z3

>0 |
4∏

b=1

qkb−1
b ̸∈ I ∀ka ∈ Z>0

}
.

In identifying the sets πa and λab with their characters, it is crucial to keep track of variables
and their ordering correctly

chπa(q1, . . . , q̂a, . . . , q4) =
∑

(k1,...,k̂a,...,k4)∈πa

∏
b̸=a

qkbb .

Definition 2.6. Introduce regularized partitions

Kreg = K −
∑
a

πa
Pa

+
∑
a<b

λab

Pab
(2.3)

and similarly

πa,reg = πa −
∑
b ̸=a

λab

Pb
. (2.4)
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Remark 2.7. We have

K = Kreg +
∑
a

πa,reg
Pa

+
∑
a<b

λab

Pab
.

Lemma 2.8. The regularized objects are Laurent polynomials. For example,

lim
qi→1

(1− qi)Kreg = 0.

2.3 Plethystics

Definition 2.9. The operator â maps a movable Laurent polynomial P ∈ Z
[
x±1 , . . . , x

±
n

]
to

a rational function â(P) ∈ Z
(
x
1/2
1 , . . . , x

1/2
n

)
such that

� for any monomial X = xc11 · · ·xcnn and p ∈ Z, â(pX) =
(
X1/2 −X−1/2

)−p
,

� â(pX1 + qX2) = â(pX1) · â(qX2) on monomials X1, X2 and integers p, q.

Remark 2.10. Such â is the representative in localization of the A-roof genus. We will apply
it to the ring Z

[
q±1 , q

±
2 , q

±
3 , µ̃

±]. The definition involves a choice of square roots, which is
crucial and we postpone until later, but is unambiguous when operating on perfect squares,
namely â(x+ x∗) is independent of such choice. Note the relation to the plethystic exponent,
â
(
x−1

)
= x1/2 exp

∑∞
n=1

xn

n .

2.4 Toric geometry

Denote the coordinates of CN+4 by ZA, for A = 1, . . . , N +4, and let the index i run from 1 to N .
Let Q =

(
QA
i

)
be an N by (N + 4) matrix of integers. This defines a U(1)N action on CN+4 (for

real parameters αi)

ZA 7→ exp

(
√
−1

N∑
i=1

αiQA
i

)
ZA, A = 1, . . . , N + 4.

With mA = |ZA|2, the momentum map µ : RN+4 → RN =
(
LieU(1)N

)⋆
is

µi(m) :=
N+4∑
A=1

QA
i mA, i = 1, . . . , N. (2.5)

Let the N -tuple of real numbers r be a regular value of µ. The quotient Xr = µ−1(r)/U(1)N is
a complex four-manifold with dimH2(Xr,Z) = N . It is a Calabi–Yau manifold in a weak sense6

if

N+4∑
A=1

QA
i = 0 for all i = 1, . . . , N.

In this case it is convenient to define a map p : RN+4 → RN+3 =
(
LieU(1)N+3

)⋆
p(m) = (m1 −m2,m2 −m3, . . . ,mN+3 −mN+4).

Then µ descends to a map RN+3 → RN =
(
LieU(1)N

)⋆
and the Newton polyhedron is

∆(Xr) = µ−1(r) ∩ im(p ◦m). We call its zero-dimensional faces vertices, and write v ∈ ∆0.

6Strictly speaking, a Calabi–Yau manifold X is a simply-connected compact Kähler manifold X with vanish-
ing c1(X).
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The vertices have valence four, namely each has four legs attached to it (some of which may be
non-compact), and they correspond to setting to zero the maximal number of mA’s compatible
with equation (2.5). Restricting to the compact skeleta of ∆(Xr) and regarding them as oriented,
we call the one-dimensional faces edges, e ∈ ∆1. Every edge P1 is incident to two vertices. We
call two-dimensional faces faces, f ∈ ∆2; and three-dimensional faces cells, c ∈ ∆3. Denote
by |∆0| = χ(Xr) the number of vertices, and similarly by |∆i|, for i = 1, 2, 3 the number of edges,
faces and cells, respectively.

One associates complex line bundles Li (i = 1, . . . , N + 4) to the U(1)N action and the
cohomology of X is generated by c1(Li). The Kähler form is inherited from the ambient vector
space ω = i

2π

∑
A dZA ∧ dZ̄A. The Hamiltonian is

H =
N+4∑
A=1

εAmA, (2.6)

where εA satisfy
∑

A εA = 0 and parametrize the U(1)N+3 action on CN+4 ZA 7→ eiεAZA.
At each vertex, we choose four local coordinates za built out of U(1)N -invariant combinations

of the ZA’s, such that their product z1z2z3z4 is invariant under U(1)N+3. Two vertices connected
by an edge along direction a are related by za → z−1

a , while zb → zbz
db
a for b ̸= a, for some

integers db, with
∑

b̸=a db = 2 to preserve the Calabi–Yau condition. The ordering of local
coordinates at v is inherited from the orientation of ∆. The quotient U(1)N+3/U(1)N acts on
these four coordinates, giving local Ω-background parameters qa = eβϵa , with

∑4
a=1 ϵa = 0.

Sometimes we write qva to emphasize the local dependence. Two vertices connected by an edge
along direction a are related by ϵa → −ϵa, while ϵb → ϵb + dbϵa for b ̸= a.

Denote by Ci ∈ H2(X,Z) the two-cycles of X with volume
∫
Ci

ω = ri. Dual to them are the
(not necessarily compact) divisors Di, such that Dj ·Ci = δji . We can think of the Di as generating
the Kähler cone in H2(X,Z), which equals by Poincaré duality H6

cmpct(X,Z). Denote by DA

the toric divisors X ∩ {ZA = 0}, which satisfy QA
i = Ci ·DA. The Calabi–Yau condition implies

trivial canonical bundle, namely −
∑

ADA = 0, which implies
∑

AQA
i = 0 for all i. Alternatively,

we have c(TX) =
∏

A

(
1 +DA

)
. The compact divisors correspond to H6(X,Z), which is dual to

H6(X,Z) and Poincaré dual to H2
cmpct(X,Z).

Since there’s a bijection between toric varieties up to isomorphism and fans up to SL(4,Z)
action, one can also work in the dual picture. (However, the polyhedron ∆ includes more
data than the dual fan.) The zero-force condition at each vertex allows to associate to it
a tetrahedron. Such tetrahedra triangulate the dual toric diagram (they must have minimal
volume 1/3! for X to be non-singular). The vectors vi that generate the one-dimensional cones
of the fan satisfy

∑
A vAQ

A
i = 0 (in fact, given the fan, one can recover Q as the kernel of the

matrix of vA’s).
An edge e along direction e, by Duistermaat–Heckman theorem has volume te =

∑
v∈e

Hv
ϵve
,

where Hv is the Hamiltonian (2.6) restricted at vertex v.
For a face f with tangent directions a, b and normal directions c, d, define

Apqr :=
∑
v∈f

(ϵvc)
p(ϵvd)

qHr
v

ϵvaϵ
v
b

, (2.7)

where the non-negative integers p, q, r satisfy p+ q + r = 2 and the sum runs over vertices in
the face. Similarly, define

c2,f :=
∑
v∈f

c2
ϵaϵb

, (2.8)

where c2 =
∑

1≤a<b≤4 ϵaϵb.
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Lemma 2.11. Let f be a compact face. Then A110 is even.

Proof. Let S be the toric surface corresponding to f. Since X is toric, we can always
split NS/X = L3 ⊕ L4, with c1(L3) + c1(L4) + c1(S) = 0. The line bundles L3,4 realizing
the splitting of the normal bundle are closely related to the combinatorial data of the poly-
tope of X, which is the reason why the normal bundle is split in the first place.7 Then we
have A110 = −

(
c21(L3) + c1(L3)c1(S)

)
. Taking c1(S) as the characteristic element for the inter-

section form, we have that x2 = c1(S)x mod 2 for any x ∈ H2(S,Z). ■

Lemma 2.12. For any compact face, denoting tangent directions 1 and 2, we have
∑

v∈f
1

P ∗
12

= 1.

Proof. For any projective toric variety X, we have Hm(X,OX) = 0 if m > 0. The holomorphic
Euler characteristic in the equivariant case is the alternating sum of the characters, which in the
simply connected case becomes 1 (the character of the global holomorphic functions, which is
one-dim space of constants). ■

Remark 2.13. The cohomological limit of Lemma 2.12 gives χ+σ
4 = 1+b2+

2 = 1, which im-
plies b2+ = 1 for projective toric surfaces.

Remark 2.14. In this notation, the signature of a compact face is

σ =
1

3

∑
v∈f

(ϵva)
2 + (ϵvb)

2

ϵvaϵ
v
b

.

3 Statement of the problem

Let us focus on the U(1) theory, i.e., we study a single D8-brane. The fixed points of the torus
action on Mζ are labeled by collections of solid partitions, possibly of infinite size,

{
K̃v, v ∈ ∆0

}
,

satisfying compatibility conditions. Compatibility means that different K̃’s can be glued together
along edges. For example, suppose e ∈ ∆1 joins v1, v2 ∈ ∆0 along the first direction, with
local equivariant parameters

(
qvi1 , qvi2 , qvi3 , qvi4

)
for i = 1, 2 related in the standard way. Then

compatibility requires that if

lim
q
v1
1 →1

(
1− qv11

)
K̃v1

(
qv11 , qv12 , qv13 , qv14

)
= π(e)

(
qv12 , qv13 , qv14

)
,

then

lim
q
v2
1 →1

(
1− qv21

)
K̃v2

(
qv21 , qv22 , qv23 , qv24

)
= π(e)

(
qv22 , qv23 , qv24

)
.

A similar equation holds for double limits and λ’s along faces.

Definition 3.1. Let ν̃ be the character of the framing space, i.e., the Coulomb branch parameter
of our U(1) theory.

Remark 3.2. Without loss of generality, we can set ν̃ = 1 in the U(1) theory.

Definition 3.3. The basic object of the local theory is

H :=
ν̃ − µ̃

P1234
− ν̃K̃ = qñ

(
ν̃ − µ

P1234
− ν̃K

)
,

7We thank an anonymous referee for pointing this out.
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where µ̃ is part of definition (1.4), µ = q−ñµ̃ and8 we used (2.2). Define the virtual character

T 2[K] := −P1234HH∗ − T 2
pert(µ), (3.1)

where we subtracted the perturbative part

T 2
pert(µ) :=

(ν̃ − µ)(ν̃ − µ)∗

P ∗
1234

. (3.2)

This corresponds to an infinite-dimensional space, as it has poles. We can write the perturbative
part as the sum of a finite contribution (depending on ñ)

T 2
6 :=

∑
v∈∆0

(
T 2
pert(µ)− T 2

pert(µ̃)
)

(3.3)

and an infinite one (independent of ñ). Around v ∈ ∆0, we associate to f ∈ ∆2 along directions a, b
the character

T 2
f := T 2

[
λab

Pab

]
. (3.4)

To e ∈ ∆1 along direction e, we associate T 2
e , defined by the formula

T 2

[
πe
Pe

]
= T 2

e +
∑
f|e∈f

T 2
f . (3.5)

Finally, we define T 2
v such that

T 2[K] = T 2
v +

∑
e|v∈e

T 2
e +

∑
f|v∈f

T 2
f . (3.6)

Remark 3.4. The perturbative part T 2
pert(µ) depends on ñ through µ. However, ñ does not

couple to lower-dimensional partitions.

Remark 3.5. Mutatis mutandis, the same structure appears in complex dimensions d = 2, 3, 4

T [K] = −P1...dHH∗ − Tpert

with contributions from codimension-one objects c ∈ ∆d−1 (almost) tensored away as in (2.2).
However, due to the reality of equation (1.1) (real representation of SU(4)), in d = 4 for the first
time we have to take half of the equations.

Lemma 3.6. A computation shows that

T 2
e =

(
1− µ− P1234

∑
a̸=e

λae

Pae

)
π∗
e,reg

P ∗
e

+Q

(
1− µ− P1234

∑
a̸=e

λae

Pae

)∗πe,reg
Pe

− P1234
πe,reg
Pe

π∗
e,reg

P ∗
e

− P1234

∑
a̸=e, b ̸=e, a ̸=b

λae

Pae

λ∗
be

P ∗
be

, (3.7)

where Q =
∏4

a=1 qa, and, if we denote by
∑′ the sum over pairwise distinct a, b, c, d,

T 2
v =

(
1− µ− P1234

(∑
a

πa,reg
Pa

+
∑
a<b

λab

Pab

))
K∗

reg

8We are using the same letter to denote the equivariant mass parameter µ(v) for v ∈ ∆0 and the vector of
moment maps µi(·), for i = 1, . . . , N in equation (2.5).
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+Q

(
1− µ− P1234

(∑
a

πa,reg
Pa

+
∑
a<b

λab

Pab

))∗
Kreg − P1234KregK

∗
reg

− P1234

(∑
a̸=b

πa,reg
Pa

π∗
b,reg

P ∗
b

+

(∑
a

πa,reg
Pa

∑
c<d;c,d̸=a

λ∗
cd

P ∗
cd

+ c.c.

)
+

′∑
a<b,c<d

λab

Pab

λ∗
cd

P ∗
cd

)
. (3.8)

Here c.c. means the complex conjugate.

Proof. The first part is obtained by plugging equations (3.4), (3.1), (3.2) into equation (3.5), and
using equation (2.4) as well as the definition of Q in the lemma. Observe that P ∗

1234Q = P1234.

Substituting the first part into equation (3.6), and using equations (2.3) and (2.4), which
imply that

K = Kreg +
∑
a

πa,reg
Pa

+
∑
a<b

λab

Pab
,

after a similar computation we get the second part. ■

Globally, each T 2
v depends on local coordinates qva around v ∈ ∆0

(
also possibly through µ(v)

)
;

similarly, each summand in T 2
e :=

∑
v∈e T 2

e (two summands) and T 2
f :=

∑
v∈f T 2

f (arbitrary
number ≥ 3 of summands) depends on its local coordinates. The redistribution∑

v∈∆0

T 2[Kv] =
∑
v∈∆0

T 2
v +

∑
v∈∆0

∑
e|v

T 2
e +

∑
v∈∆0

∑
f|v

T 2
f =

∑
v∈∆0

T 2
v +

∑
e∈∆1

∑
v∈e

T 2
e +

∑
f∈∆2

∑
v∈f

T 2
f

=
∑
v∈∆0

T 2
v +

∑
e∈∆1

T 2
e +

∑
f∈∆2

T 2
f

is such that T 2
v , T

2
e , T

2
f

(
as well as T 2

6

)
are movable Laurent polynomials, as we discuss below.

The equivariant K-theory class of the virtual tangent space to Mζ at a fixed point (including
contributions from matter bundle E) is the virtual character

I2 := T 2
6 +

∑
v∈∆0

T 2
v +

∑
e∈∆1

T 2
e +

∑
f∈∆2

T 2
f .

Our goal is to apply â to I2, after taking a suitable square root. All these terms are squares in
the sense that if they contain a monomial m, then they also contain m∗, and taking square roots
means consistently picking only half of these terms. The fact that I2 is a square has a geometric
interpretation in the deformation-obstruction complex of X being self-dual.

Remark 3.7. Consider the pullback Ev = ι∗vE of the universal sheaf via the inclusion ιv : M×
{v} → M × X of a fixed point v ∈ ∆0. With N = qñν̃, we have ch Ev = N − P1234K. Then
we get∫

X
[ch(E ⊗ E∗)− ch(E ⊗M∗)− ch(E∗ ⊗M)] tdX

=
∑
v∈∆0

ch Ev ⊗ E∗
v − ch Ev ⊗M∗ − ch E∗

v ⊗M

P ∗
1234

=
∑
v∈∆0

P1234HH∗

the last equality up to an irrelevant (non-dynamical) factor MM∗. The gauge theoretic represen-
tative of ch Ev also gives rise to the infinite factors NN∗/P1234, the perturbative part, which we
subtract accordingly. The result equals

∑
v∈∆0

T 2[Kv]. Finally, the map â converts this from the
equivariant K-theory of the fixed locus in M to its localization.
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4 Computation of fugacities

Each vertex v ∈ ∆0 sits at the intersection of four toric divisors, some of which can be non-
compact. Compact toric divisors of X correspond to cells, and to each cell c ∈ ∆3 we associate
an integer ñc. Let Sv ⊂ {1, 2, 3, 4} be the set of directions that are normal to compact divisors
at v, and define a map iv : Sv → ∆3 that assigns to each normal direction its cell, so that we can
write ϵ · ñ =

∑
a∈Sv

ϵ
(v)
a ñiv(a). Equivalently, we have a line bundle L with equivariant first Chern

class c1(L) =
∑

c∈∆3
ñcc1(Dc), where divisor Dc corresponds to cell c.

As in Remark 3.7, consider the pullback Ev = ι∗vE of the universal sheaf via the inclu-
sion ιv : M×{v} → M×X of a fixed point v ∈ ∆0. With ν̃ = ϵβα̃ and N = qñν̃, its character

ch Ev = N − P1234K = qñν̃ − qñν̃P1234

(
Kreg +

∑
a

πa,reg
Pa

+
∑
a<b

λab

Pab

)

can be conveniently written as the tensor product ch Ev = ch
(
L⊗ E(0)

v

)
, where E(0)

v is simply Ev
with all the fluxes ñ set to zero, and chL = qñ = eβñ·ϵ.

The equivariant gamma-class of a toric CY 4-fold at a fixed point v ∈ ∆0

Γ̂v =
4∏

a=1

Γ

(
1 +

β

2π
ϵa

)
= 1− 1

24
c2β

2 − ζ(3)

(2π)3
c3β

3 +
ζ(4)

(2π)4

(
7

4
c22 − c4

)
β4 +O

(
β5
)

can be written in terms of elementary symmetric polynomials ci in variables ϵ1, . . . , ϵ4.
We want to use equivariant localization to compute equation (1.2) in terms of

Z2n :=

∫
X

(−ω)n

n!

(
ch(E)Γ̂X

)
4−n

=
∑
v∈∆0

Hn
v

n!

1∏4
a=1 ϵ

v
a

(
ch Ev · Γ̂v

)
4−n

, 0 ≤ n ≤ 4, (4.1)

where the subscript 4 − n denotes the power of β, and Hv is the Hamiltonian evaluated at v.
Recall that Z0 appears as (−p)−Z0 in the fugacity u.

Definition 4.1. For any edge e ∈ ∆1, we have transition functions di defined in Section 2.4
obeying the relation

∑
i di = 2. Given a (regularized) plane partition π, its box is denoted

as 2 = (i− 1, j − 1, k − 1), and we introduce the sign sπ(2) = ±1, depending on whether the
box is added or removed (just like the size of a regularized partition can be negative). Let

fe(π) :=
∑
2∈π

sπ(2)[1− idi − jdj − kdk].

Given a tuple of integers (ñc)c∈∆3 , let
9 fe(ñ) :=

∑
v∈e

ϵ·ñ
ϵe
, where the sum runs over the two

vertices in the edge, and ϵe denotes tangent direction.
For any face f ∈ ∆2, define functions Apqr as in equation (2.7). Given a Young diagram λ,

denote its box by 2 = (i− 1, j − 1), and let

gf(λ) :=
∑
2∈λ

[(
i(i− 1)

2
+

1

6

)
A200 +

(
j(j − 1)

2
+

1

6

)
A020 +

(
ij − i+ j

2
+

1

4

)
A110

]
.

Similarly, let

g̃f(λ) :=
∑
2∈λ

[(i− 1/2)A101 + (j − 1/2)A011] .

9Here and below, we are denoting by the same letter different functions, which are distinguished only by the
argument they take.
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Given a tuple of integers (ñc)c∈∆3 , let

gf(λ, ñ) :=
∑
v∈f

(i− 1/2)ϵc + (j − 1/2)ϵd
ϵaϵb

(ϵ · ñ),

where a, b denote directions tangent to f, c, d denote directions normal to f, and the sum runs
over vertices in f. Similarly, let

g̃f(ñ) :=
∑
v∈f

(ϵ · ñ)Hv

ϵaϵb
as well as gf(ñ) :=

∑
v∈f

(ϵ · ñ)2

ϵaϵb
.

Finally, define global functions

cp,q,r(ñ) :=
∑
v∈∆0

cp(ñ · ϵ)qHr
v∏4

a=1 ϵa
, (p, q, r) = (2, 1, 1), (2, 2, 0), (3, 1, 0)

as well as

hi(ñ) :=
∑
v∈∆0

H4−i
v

(4− i)!

(ñ · ϵ)i

i!

1∏4
a=1 ϵa

, i = 1, 2, 3, 4.

Lemma 4.2. Terms involving α̃ do not contribute to the sum over fixed points in equation (4.1).
Up to terms independent of E, which contribute overall factors, the D0-brane charge reads

Z0 = −
∑
v∈∆0

|Kv
reg|+

∑
e∈∆1

fe(πe,reg) +
∑
e∈∆1

|πe,reg|fe(ñ)−
∑
f∈∆2

gf(λf) +
1

24

∑
f∈∆2

|λf |c2,f

−
∑
f∈∆2

gf(λf , ñ)−
1

2

∑
f∈∆2

|λf |gf(ñ) + h4(ñ)−
1

2

1

24
c2,2,0(ñ)−

ζ(3)

(2π)3
c3,1,0(ñ)

with c2f defined as in equation (2.8). The D2-brane charge reads

Z2 =
∑
e∈∆1

te|πe,reg| −
∑
f∈∆2

g̃f(λf)−
∑
f∈∆2

|λf |g̃f(ñ) + h3(ñ)−
1

24
c2,1,1(ñ).

The D4-brane charge reads

Z4 = −1

2

∑
f∈∆2

|λf |A002 + h2(ñ).

The D6-brane charge reads Z6 = h1(ñ).

Proof. Let us drop the suffix v for brevity, and expand Γ̂ = 1 +
∑

i≥2 Γiβ
i and chL = 1 +∑

i≥1 Liβ
i, where Li =

1
i!(ñ · ϵ)i. Let us expand

ch E(0) = 1 +
∑
i≥1

E(0)
i βi

and compute some terms

E(0)
4 =

α̃4

4!
− |Kreg|

4∏
a=1

ϵa +
∑
a

∑
2∈πa,reg

(
2− 1

2
ϵa + α̃

)∏
b ̸=a

ϵb

− 1

2

∑
a<b

∑
2∈λab

[
(2+ α̃)2 + (2+ α̃)

∑
c̸=a,b

ϵc +
1

3

∑
c ̸=a,b

ϵ2c +
1

2

∏
c ̸=a,b

ϵc

] ∏
c̸=a,b

ϵc,
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E(0)
3 =

α̃3

3!
+
∑
a

|πa,reg|
∏
b ̸=a

ϵb −
∑
a<b

∑
2∈λab

(
2+ α̃+

1

2

∑
c ̸=a,b

ϵc

) ∏
c ̸=a,b

ϵc,

E(0)
2 =

α̃2

2
−
∑
a<b

|λab|
∏
c ̸=a,b

ϵc, E(0)
1 = α̃.

The relevant product is then

ch E · Γ̂ = chL · ch E(0) · Γ̂ = 1 + β
(
L1 + E(0)

1

)
+ β2

(
E(0)
2 + Γ2 + L2 + E(0)

1 L1

)
+ β3

(
E(0)
3 + Γ3 + L3 + E(0)

2 L1 + E(0)
1 L2 + E(0)

1 Γ2 + Γ2L1

)
+ β4

(
E(0)
4 + L4 + Γ4 + E(0)

3 L1 + E(0)
2 Γ2 + E(0)

2 L2 + E(0)
1 Γ3

+ E(0)
1 L3 + L2Γ2 + L1Γ3

)
.

Summing over fixed points we get the result. ■

5 Vertex

In this section, we introduce the K-theoretic four-vertex. This is where most of the complexity
of DT counts lies. First, we introduce some machinery to deal with partitions of infinite size,
then take a candidate square-root of the vertex, and fix its sign using residues.

5.1 Euler characteristic

Definition 5.1. Given a quadruple of plane partitions π = (π1, π2, π3, π4), possibly of infinite
size, introduce the sets

Σ1 =
{
(n; a) | n ∈ Z4

>, 1 ≤ a ≤ 4, na ∈ πa
}
,

Σ2 =
{
(n; a, b) | n ∈ Z4

>, 1 ≤ a < b ≤ 4, na ∈ πa, nb ∈ πb
}
,

Σ3 =
{
(n; a, b, c) | n ∈ Z4

>, 1 ≤ a < b < c ≤ 4, na ∈ πa, nb ∈ πb, nc ∈ πc
}
,

Σ4 =
{
n | n ∈ Z4

>, na ∈ πa ∀a = 1, . . . , 4
}
,

where na for 1 ≤ a ≤ 4 means n with a-th entry dropped. As the Σi’s were defined as sets, we
define their characters

chΣ1 =
∑

(n;a)∈Σ1

4∏
i=1

q
(n)i−1
i , chΣ2 =

∑
(n;a,b)∈Σ2

4∏
i=1

q
(n)i−1
i ,

chΣ3 =
∑

(n;a,b,c)∈Σ3

4∏
i=1

q
(n)i−1
i , chΣ4 =

∑
n∈Σ4

4∏
i=1

q
(n)i−1
i ,

where (n)i denotes the i-th component of n. We introduce the set Σ, defined through its character

chΣ := chΣ1 − chΣ2 + chΣ3 − chΣ4. (5.1)

Given a solid partition K with asymptotics π, define its ‘Euler characteristic’

χK := chK − chΣ. (5.2)

Remark 5.2. The character Σ is a pure character and the character of some infinite partition.
Moreover, P1234Σ is a Laurent polynomial.
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Remark 5.3. The sets Σ1, Σ2, Σ3, Σ4 do not depend on K. We have chΣ1 =
∑

a
πa
Pa

. One can
rewrite

Σ2 = {(n; a, b) | (n, a) ∈ Σ1, (n, b) ∈ Σ1, a < b}.

Lemma 5.4. The character χK is a pure character and a Laurent polynomial.

Proof. Suppose limqi→1(1 − qi)χK = ρi. Then χK must contain the whole series S = ρi
1−qi

and since χK ⊆ K then S ⊆ K. But then it must be ρi ⊆ πi, therefore S ⊆ Σ1. This is in
contradiction with the fact that if n ∈ χK then n ̸∈ Σ1. ■

Definition 5.5. Given a quadruple of plane partitions π = (π1, π2, π3, π4), possibly of infinite
size, recall the identities

λab := lim
qa→1

(1− qa)πb = lim
qb→1

(1− qb)πa, 1 ≤ a < b ≤ 4,

and introduce the set

Σ′
2 = {(n; a, b) | n ∈ Z4

>, 1 ≤ a < b ≤ 4, nab ∈ λab},

where nab for 1 ≤ a < b ≤ 4 means n with the a-th and b-th entries dropped. Its character is

chΣ′
2 =

∑
(n;a,b)∈Σ′

2

4∏
i=1

q
(n)i−1
i .

Remark 5.6. The set Σ′
2 ⊆ Σ2 does not depend on K. We have chΣ′

2 =
∑

a<b
λab
Pab

.

Definition 5.7. Define the difference of Laurent polynomials

ℓ := Kreg − χK = chΣ− chΣ1 + chΣ′
2. (5.3)

Remark 5.8. The Laurent polynomial ℓ only depends on π (not on K).

Remark 5.9. A similar construction of the pair (χ,Σ) can be performed in any dimension d.
For Young diagrams (d = 2), χ is still a Young diagram, while this is not the case in general.

5.2 Square roots

Within this section, we fix v ∈ ∆0.

Definition 5.10. Let us define the virtual character

Tcross := −
∑
a̸=b

Pd(a,b)qbπa,regπ
∗
b,reg − P1234

∑
a

πa,reg
Pa

∑
c<d
c,d̸=a

λ∗
cd

P ∗
cd

−
∑

(abcd)=(1234),
(1324),(1423)

λabλ
∗
cdqcqd,

where d(a, b) is the smallest integer in {1, 2, 3, 4} different from a and b. This Tcross contains
constant terms (all manifestly movable) from the viewpoint of the vertex.10

Remark 5.11. This choice depends on the ordering of the set of edges emanating from a vertex.
When gluing vertices, we will need to check the independence of the final result.

10We call a virtual character constant from the viewpoint of the vertex if it is the same for any two solid
partitions Kv and K′

v that have the same asymptotics π.
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Lemma 5.12. After imposing Q = 1, the virtual character

Tv =

(
1− µ− P1234

(∑
a

πa,reg
Pa

+
∑
a<b

λab

Pab

))∗
Kreg − P123KregK

∗
reg + Tcross

is a square root of equation (3.8). Both Tv and Tcross are manifestly Laurent polynomials.

Proof. Use the identities Pabc + P ∗
abc = P1234 and qdP

∗
d = −Pd, as well as qaqc = (qdqb)

∗ for any
permutation (a, b, c, d) of (1, 2, 3, 4). ■

Remark 5.13. The condition Q = 1, once imposed at one vertex, is satisfied at every vertex.

Definition 5.14. For a given K, with χ := χK and Σ defined in equations (5.2) and (5.1),
respectively, let us define the non-constant part

T := (1− µ)∗χ− P123χχ
∗ − P1234Σ

∗χ.

With ℓ as in equation (5.3), let us define the constant part

Tconst := (1− µ− P1234(Σ− ℓ))∗ℓ− P123ℓℓ
∗.

Lemma 5.15. Up to conjugation, the Laurent polynomial Tv decomposes as Tv = T+Tcross+Tconst.

Proof. Recall that K −Kreg =
∑

a
πa,reg

Pa
+
∑

a<b
λab
Pab

. Plug in the definitions, use the fact that ℓ
is a Laurent polynomial, and conjugate the finite term P123ℓχ

∗. ■

Lemma 5.16. The Laurent polynomial T is movable.

Proof. Recall that Σ is a pure character and the character of some (infinite) solid partition.
We use induction on the size of χ. For χ = 0, T = 0 is movable. Denote the new box by ξ. We
work up to movable terms, i.e., (·)0 is understood everywhere in the proof. We have

δT := T [χ+ ξ]− T [χ] = ξ + 1− P123(χ+ ξ)∗ξ − P123(χ+ ξ)ξ∗ − P1234Σ
∗ξ.

Let Π = Π(ξ) be the parallelepiped generated by ξ, and Π1 = (χ + ξ) ∩ Π. Then χ + ξ =
Π1+(χ+ξ)\Π1. By the same arguments as the finite case [43, Section 2.4.1], P123((χ+ξ)\Π1)

∗ξ = 0
and P123((χ+ ξ) \Π1)ξ

∗ = 0. Then

δT = 1 + ξ − P123Π
∗
1ξ − P123Π1ξ

∗ − P1234Σ
∗ξ.

Now we claim that P1234(Σ \Π2)
∗ξ = 0, where Π2 = Σ ∩Π. Then

δT = 1 + ξ − P1234(Π1 +Π2)
∗ξ

but Π1 +Π2 = Π and P1234Π
∗ξ = 1 + ξ is literally the finite case result. ■

Definition 5.17. Let k = |χ|. By replacing χ →
∑k

i=1 xi in T , let

Tformal = (1− µ− P1234Σ)
∗
∑
i

xi − P123

∑
i ̸=j

xix
−1
j − kP123,

where the dependence on π is encoded in Σ. We define the K-theoretic 4-vertex

Vv(π) := â(Tcross)â(Tconst)

∞∑
k=0

(−p)|Kreg|
∮

â(Tformal + k)

k∏
i=1

dxi
xi

,

where the subscript v keeps track of local coordinates and the integral is defined using Jeffrey–
Kirwan prescription. In computing iterated residues, we order χ = χ1 + · · ·+ χk as in [43]. The
fugacity (−p)|Kreg| comes from equation (1.3), and it is equal to (−p)k, up to a constant factor.
Here we neglect an overall sign, relevant only for the global picture.
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Theorem 5.18. For a given k, the admissible poles are in one-to-one correspondence with the
Euler characteristics χ of solid partitions K with asymptotics π, such that |χ| = k.

Proof. The relevant measure (neglecting µ terms) is

mk =
k∏

i=1

â(−P1234Σ
∗xi)

k∏
i=1

â(xi)
∏

k≥i>j≥1

â(−P1234xi/xj). (5.4)

Notice that, except for the Σ term, this is the same as the finite case [43, Section 2.3]. Let us
assume by induction that the statement is true for k− 1. The tree argument from finite case still
works, so the new pole uk can only grow by ek − ei, with i < k, from some ui belonging to some
admissible χk−1. (Here, as in [43], ek − ei is a positive root of sl(k) corresponding to the last
factor in equation (5.4).) Let us work with Q unconstrained first. There’s one new case, which is
when the new box borders Σ. In this case there are two poles (one from ui ∈ χk−1 and one from
some σ ∈ Σ) and one zero (from q−1

a σ for some a ∈ {1, 2, 3, 4}), therefore we still get a simple
pole and the case is admissible. This means that χk is a partition in the background of Σ, which
is what we wanted to prove. ■

Theorem 5.19. With the ordering for χ as in Definition 5.17, let us define the sign

sv(χ) :=

(
P123

∑
i<j

χiχ
∗
j

)
0

,

where the subscript 0 denotes unmovable part. Define the measure

Mv(K) := (−1)sv(χ)â(T + Tcross + Tconst).

Then the following holds:

Vv(π) =
∑

K ending on π

(−p)|Kreg|Mv(K).

Proof. We can prove the relation at each pole, by analyzing the terms contributing a sign in
the residue, as in the finite case [43, Section 2.4.2]. The only term in the measure involving x−1

is −P123xi/xj ; by applying induction on the size of χ, we get the thesis. ■

5.3 Examples

5.3.1 Vertex with one leg

Consider the vertex with one non-trivial leg π1. Let K be any solid partition with asymp-
totics π1 = π1(q2, q3, q4) along direction q1, and trivial asymptotics otherwise. Let χ = K − π1

P1
.

Then we have

T =

(
1− µ− P1234

π1
P1

)∗
χ− P123χχ

∗.

This case can be checked against K-theoretic quasimap counts, and this is done in a companion
paper [47]. Here we only write a formula for the simplest example.

Conjecture 5.20. The one-leg vertex with one-box asymptotics (π1 = 1) takes the form

Vv(□,∅,∅,∅)

Vv(∅,∅,∅,∅)
=
∑
n≥0

pnµ−n/2
n∏

k=1

1− µqk1
1− qk1

.

See also [32, Lemma 6.5.1].
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6 Theory on the edge

Let Σ be a two-dimensional Riemann surface, with metric gΣ and local complex coordinates z, z̄,
in which the metric gΣ is Hermitian, and, therefore, Kähler. We also fix a triplet of line bundles La,
such that the tensor product of all three bundles equals the canonical bundle

L1 ⊗ L2 ⊗ L3 ≈ KΣ. (6.1)

We endow each of these bundles with the Hermitian connections ϖadz + ϖ̄adz̄, compati-
ble with (6.1) and the metric on Σ. In a local trivialization, a section sa of La has the
norm ρa(z, z̄)|sa|2 so that ρ1ρ2ρ3 = gzz̄, and ϖa = 1

2ρ
−1
a ∂ρa, ϖ̄a = 1

2ρ
−1
a ∂̄ρa.

We are going to define a two-dimensional cohomological field theory, whose fields are the U(k)-
gauge field Azdz +Az̄dz̄, a triplet of La-twisted complex adjoint scalars Ba and their L−1

a = L̄a-
twisted conjugates B†

a, and a scalar field I valued in the fundamental representation of U(k)
(i.e., a section of a rank k complex vector bundle associated with the principal U(k) bundle in
which A is a connection).

These fields are constrained by the equations, which are the two-dimensional generalization of
the equations describing the Hilbert scheme of points on C3 [36, 38, 39, 41]

Dz̄Ba + εabc
[
B†

b , B
†
c

]
= 0, a = 1, 2, 3, Dz̄I = 0,

−gzz̄Fzz̄ + II† +
3∑

a=1

ρ−1
a

[
Ba, B

†
a

]
= r · 1. (6.2)

Here Dz̄Ba = ∂z̄Ba + ϖ̄aBa + [Az̄, Ba], and Dz̄I = ∂z̄I + Az̄I. The space of solutions to equa-
tions (6.2) is to be modded out by the group of U(k) gauge transformations. The corresponding
moduli space is a disjoint union of spaces M(k) =

∐
p∈ZMp(k) with p being the first Chern

class of the gauge bundle

p =
1

2πi

∫
Σ
trFA.

For the purposes of this paper, we shall only need to consider the case of Σ = S2, with the
metric gΣ having a U(1) isometry (the round metric on a sphere is one such example). Imagine
the geometry of a long cylinder that is capped at the ends by two hemispheres. In the long
flat region, where ϖ = 0, we can look for specific solutions of equations (6.2), namely, the
z,z̄-independent B1, B2, B3 and B4 ≡ Az̄. Then equations (6.2) reduce to the familiar equations

[B4, Ba] + εabc
[
B†

b , B
†
c

]
= 0, a = 1, 2, 3, B4I = 0, II† +

4∑
i=1

[
Bi, B

†
i

]
= r · 1

describing the Hilbert scheme of points on C3. Towards the caps, the derivative terms become
important.

The fields and the equations, together with the gauge symmetry, make up the field content
of twisted N = (2, 2) supersymmetric gauge theory in two-dimensions. Unlike the generic
theory with four supercharges, which has only A-type or B-type twists, this theory admits
a variety of twists due to the extended supersymmetry of its core component. Namely, our
theory is N = (8, 8) U(k) super-Yang–Mills theory, whose symmetry is broken down to N = (2, 2)
by coupling to the fundamental chiral multiplet, whose complex scalar component is simply I.
The N = (8, 8) part has an SO(8) R-symmetry group, which partly survives the coupling to the
fundamental chiral, allowing for a variety of twisting R-symmetries.

Our theory can be canonically lifted to a three-dimensional theory with the same field content,
except that one of the real scalars in the vector multiplet becomes the third component of the
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gauge field. It is this three-dimensional theory that we use in this paper in defining the edge
contributions.

Let us now analyze the solutions to equations (6.2) in the case of Σ = S2. First, the norm
squared of the first equations

0 =
3∑

a=1

∫
S2

d2zρ−1
a tr

(
Dz̄Ba + εabc

[
B†

b , B
†
c

])(
DzB

†
a − ε̄abc[Bb, Bc]

)
=

3∑
a=1

∫
S2

d2zρ−1
a tr

(
Dz̄BaDzB

†
a

)
+
∑
b<c

∫
S2

d2z
√
gρbρc tr[Bb, Bc][Bb, Bc]

†,

where we used the identity ρ1ρ2ρ3
√
g = 1, and

∫
S2 ∂̄ tr(B1[B2, B3]) = 0 with the understanding

that tr(B1[B2, B3]) is a (1, 0)-form on Σ (being a section of the canonical bundle). Thus,
equations (6.2) imply

Dz̄Ba = 0, Dz̄I = 0, a = 1, 2, 3, (6.3)

and [Bb, Bc] = 0, 1 ≤ b < c ≤ 3. The operator ∇z̄ = ∂̄z̄+Az̄ defines the structure of a holomorphic
rank k bundle E over P1, of which I is a holomorphic section, while the operators Ba are the
commuting holomorphic twisted Higgs fields

I ∈ H0
(
P1, E

)
, Ba ∈ H0

(
P1, E ⊗ E∗ ⊗ La

)
.

Now, to proceed algebro-geometrically we would like to replace the last equation in (6.2) by an
r-dependent stability condition, so that instead of solving the last equation in (6.2) we divide the
space of stable solutions to equations (6.3) by the group GC of GL(k,C) gauge transformations

(B1, B2, B3, Az̄, I) 7→
(
g−1B1g, g

−1B2g, g
−1B3g, g

−1Az̄g + g−1∂̄z̄g, g
−1I
)
.

We can now fix the gauge Az̄ = 0 on the northern and on the southern hemispheres H± with the
transition function h(z) being holomorphic on the intersection H+ ∩H− = C×. Grothendieck’s
theorem allows us to find a conjugacy class of h in the form of a diagonal matrix

h(z) = diag
(
zp1 , . . . , zpk

)
,

where pi ∈ Z, p1 ≥ p2 ≥ · · · ≥ pk, and p1 + p2 + · · ·+ pk = p. In this gauge the rest of the fields
are holomorphic on H± respectively, with the identifications

I+(z) = h(z)I−(z), Ba,+(z) = ℓa(z)h(z)Ba,−(z)h(z)
−1, a = 1, 2, 3,

where ℓa(z) = z−la are the transition functions of the holomorphic bundles La. The isomor-
phism (6.1) implies l1+ l2+ l3 = −2. We see that the non-trivial solutions for I lie in the subspace
of Ck spanned by the eigenvectors ei of h with pi ≥ 0. The corresponding components υi(z),

I+(z) =
k∑

i=1

υi(z)ei

are simply some degree pi polynomials in z, so that z−piυi(z) is a degree pi polynomial in z−1.
The classification of possible solutions for Ba’s is more involved.
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6.1 ADHM-like model for the one-leg theory

Let us present the matrix quantum mechanics describing the moduli space of solutions to the
vortex equations (6.2). We fix two complex vector spaces R,P , of dimensions r and p, respectively,
endowed with Hermitian metrics. The fields of our model are

I ∈ Hom(C, R), BA ∈ End(R), A = 1, 2, 3, 4,

γ ∈ Hom(R,P ), βa ∈ Hom(P,R), a = 1, 2, 3.

They are subject to the equations

[Ba, Bb] + εabc([Bc, B4] + βcγ)
† = 0, Baβb −Bbβa + εabc(γBc)

† = 0,

3∑
a=1

B†
aβa +B4γ

† = 0,
4∑

A=1

[BA, B
†
A] + II† +

3∑
a=1

βaβ
†
a − γ†γ = ζR · 1R

and to the equivalence relation

(I;BA;βa; γ) 7→
(
g−1I; g−1BAg; g

−1βa; γg
)
, g ∈ U(r).

6.2 Connection to cigar partition function

One can interpret the 1-leg vertex function of the magnificent four theory as the cigar partition
function [19] of the (2+1)-dimensional gauged linear sigma model with the field content described
in the previous subsections. The latter is expected to obey a system of difference equations,
forming part of the rich algebraic structure hidden in the full 4-vertex.

7 Edge

Recall that the product P1234, just like qa for a = 1, 2, 3, 4, depends on the choice of v ∈ ∆0.

Definition 7.1. Fix a reference v and direction e = 1. Let

Te =
(
1− µ− P1234

∑
a̸=e

λae

Pae

)∗πe,reg
Pe

− P123
πe,reg
Pe

π∗
e,reg

P ∗
e

−
∑

a̸=e,b ̸=e
a̸=b

Pabe
λae

Pae

λ∗
be

P ∗
be

. (7.1)

Lemma 7.2. Te is a square root of equation (3.7). Te =
∑

v∈e Te is a movable Laurent polynomial.

Proof. We take for simplicity e = 1 and focus on the non-constant part of equation (7.1)

T =

(
1− µ− P1234

Σ

P

)∗ χ

P
− P123

χ

P

χ∗

P ∗ ,

where χ = χπe , Σ = Σe = πe,1 − πe,2 + πe,3 and P = Pe. By induction, add a box ξ to χ. We
have δT = δT + δT̄ , where bar means ‘evaluated at the other vertex’, and

δT =

(
1− P1234

Σ

P

)∗ ξ

P
− P123

1

PP ∗ − P1234
χ

P

ξ∗

P ∗ .

We work up to movable terms, and compute

P123 + P̄123

(1− q1)(1− q∗1)
= 1.
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For any m = qα−1
2 qβ−1

3 qγ−1
4 , we define [m] := 1

1−q1
(m̄− q1m). By introducing the parallele-

piped Π = Π(ξ) and decomposing, we get

δT = −P1234
Σ \Π2

P

ξ∗

P ∗ − P1234
χ \Π1

P

ξ∗

P ∗ − P1234
Π

P

ξ∗

P ∗ + c.c.− 1 + [ξ],

where c.c. means bar. We compute [P234(Σ \Π2)ξ
∗] = 0 = [P234(χ \Π1)ξ

∗], so that

δT = −1 + [ξ]− [P234Πξ∗],

and since [P234Πξ∗] = −[ξ] + 1, we have δT = 0. ■

Definition 7.3. The edge measure is

Ee(λ) := (−p)−fe(πe,reg)−|πe,reg|fe(ñ)e−te|πe,reg|â(Te)

with fugacities determined by the relevant summands in Lemma 4.2.

Remark 7.4. The unmovable part of q1P23−P̄23

1−q1
is −1, so that

const := k
q1P23 − P̄23

1− q1
+ k

is a movable Laurent polynomial.

8 Theory on a face

Now let us do a similar exercise in four and five dimensions. We start with a complex Kähler
surface S, with Kähler metric gS and local holomorphic coordinates z, w. We also need to fix
the line bundles L1, L2 over S, such that L1 ⊗ L2 = KS . This choice is similar [52] to the choice
of the so-called “basic classes” of Donaldson–Kronheimer–Mrowka.

The fields of our theory are the gauge field A, the two adjoint-valued complex scalars B1, B2,
twisted by the line bundles L1 and L2, respectively, a pair (I, J) of fundamental and anti-
fundamental scalar fields, with J twisted by KS , and a pair (Υ,Ψ) of fermionic fundamental and
anti-fundamental scalar fields, with Ψ twisted by KS .

Our fields are again constrained by a set of elliptic (modulo gauge symmetry) equations

Dz̄B1 +DwB
†
2 = 0, Dw̄B1 −DzB

†
2 = 0, Dz̄Υ+DwΨ

† = 0,

Dw̄Υ−DzΨ
† = 0, Dz̄I +DwJ

† = 0, Dw̄I −DzJ
† = 0,

Fzw + [B1, B2] + IJ = 0,

−Fzz̄ − Fww̄ + II† − J†J +ΥΥ† −Ψ†Ψ+
2∑

a=1

[
Ba, B

†
a

]
= r · 1. (8.1)

The middle equations in (8.1) can be more invariantly stated as ∂̄ĀI + ∂̄†
Ā
J† = 0 where J† is

naturally viewed as a (0, 2)-form valued in the same vector bundle, as I.
Our theory is, naturally, a twisted N = 2 theory in four dimensions, which is obtained

from a twisted N = 4 theory by coupling it to a (twisted) hypermultiplet in the fundamental
representation, and reversed statistics twisted hypermultiplet in the fundamental representation
(such hypermultiplets naturally occur in the theories with negative branes as in [21]).

Of course, four-dimensional theory with N = 2 supersymmetry with matter hypermultiplets
both in the adjoint and fundamental representations is strongly coupled in the ultraviolet, and
the localization computations reducing path integral to the semi-classical analysis are not valid.
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Fortunately, the reversed statistics hypermultiplet cancels the contribution of the fundamental
hypermultiplet to the beta function. It is this reversed statistics hypermultiplet which is coupled
to the µ-parameter of the magnificent four theory.

The gauge bundle now can have both c1 and c2 and these result in the nontrivial edge and
vertex contributions in the localization approach.

Our theory canonically lifts to five dimensions, which is the version used in our paper.

9 Face

Definition 9.1. Given a Young diagram λ and a box (i, j) in it, we define its arm and leg
lengths as ℓ = λj − i, a = λt

i − j, where λt denotes the transposed diagram.

Definition 9.2. Fix reference directions a = 1 and b = 2 for f ∈ ∆2. Following [34], let

Tf = −µ∗ λ12

P12
+
∑

2∈λ12

qℓ+1
3 q−a

4

P ∗
12

, (9.1)

where ℓ and a are the leg and arm lengths of 2 ∈ λ.

Lemma 9.3. Tf is a square root of equation (3.4). Tf =
∑

v∈f Tf is a movable Laurent polynomial.

Proof. The function

sα,β :=
∑
v∈f

qα3 q
β
4(

1− q−1
1

)(
1− q−1

2

)
is a Laurent polynomial for all α, β ∈ Z because it is the equivariant Euler characteristic of the
product of two line bundles over a compact surface. Then

f2(a, ℓ) =
∑
v∈f

qa+ℓ+1
3 (q1q2)

a(
1− q−1

1

)(
1− q−1

2

)
is a Laurent polynomial, being of the form sα,β. It is also movable for all a, ℓ ≥ 0, since
q
(v)
3 = q3q

p(v)
1 q

q(v)
2 and h = a + ℓ+ 1 > 0. ■

Definition 9.4. The face measure is

Ff := (−p)gf(λf)− 1
24

|λf |c2,f+gf(λf ,ñ)+
1
2
|λf |gf(ñ)eg̃f(λf)+|λf |g̃f(ñ)+ 1

2
|λf |A002 â(Tf)

with fugacities determined by the corresponding summands in Lemma 4.2.

Remark 9.5. Upon enforcing the CY condition, the index of Dirac operator gives

#sα,β =
1

2

∫
S

[(
α− 1

2

)
c1(L3) +

(
β − 1

2

)
c1(L4)

]2
− σ

8

=
1

8
(S.S − σ) +

1

2
β(β − 1)S.S +

1

2
(β − α)2L3.L3 + S.L3

(
β − 1

2

)
(β − α),

whose integrality implies

S.S − σ = 0 mod 8, S.L3 + L3.L3 = 0 mod 2. (9.2)

Here S.S =
∫
S c1(S)

2, S.L3 =
∫
S c1(S)c1(L3), and L3.L3 =

∫
S c1(L3)

2. The first equation
in (9.2) follows from Hirzebruch signature theorem 2χ+ 3σ = S.S, while the second is equivalent
to A110 and

∫
S e(N ) being even (see Lemma 2.11, where N is defined).
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9.1 Virtual dimension

Recently, there has been some progress [3, 4] on surface counting in the CY4 setting. In order to
facilitate comparison and future work, let us compute the number of monomials in the (movable)
Laurent polynomial Tf .

Lemma 9.6. With definitions as in Lemma 4.2, if we decompose the Laurent polynomial Tf

as P1 + µ̃P2, then the identities

#P1 =: vdim = g(λ)− 1

2
|λ|2A110 −

1

8
|λ|(σ + σ̃)

as well as

#P2 = −1

2
|λ|g(ñ)− g(λ, ñ)− g(λ) +

1

8
|λ|(σ + σ̃)

hold true for any compact face f in a toric CY4.

Proof. Up to conjugation, we can write equation (9.1) as

Tf =
∑
2∈λ

qℓ+1
3 q−a

4 − µ̃q−ñq1−i
3 q1−j

4

P ∗
12

.

We apply twice the remark above,

#P1 =
1

2

∑
2∈λ

[(
ℓ+

1

2

)
L3 −

(
a +

1

2

)
L4

]2
− σ|λ|

8
.

The integrand instead depends on µ, and therefore on the the restriction to S of the line
bundle L =

∑
c∈∆3

ñcLc, with Lc the line bundle associated to cell c

#P2 = −1

2

∑
2∈λ

[(
i− 1

2

)
L3 +

(
j − 1

2

)
L4 + L

]2
+

σ|λ|
8

.

For the purpose of this proof, we define σ̃f :=
1
3(A200 +A020), and

ĝ(λ) :=
∑
2∈λ

[(
ℓ(ℓ+ 1)

2
+

1

6

)
A200 +

(
a(a + 1)

2
+

1

6

)
A020 −

(
ℓa +

1

2
(a + ℓ) +

1

4

)
A110

]
.

We claim that ĝ(λ)− gf(λ) = −1
2 |λ|

2A110.
We immediately recognize various terms −1

2 |λ|L
2 = −1

2 |λ|gf (ñ) as well as

−
∑
2∈λ

[(
i− 1

2

)
L3 +

(
j − 1

2

)
L4

]
· L = −gf (λ, ñ)

and

−1

2

∑
2∈λ

[(
i− 1

2

)
L3 +

(
j − 1

2

)
L4

]2
= −gf (λ) +

1

8
σ̃f |λ|.

From this, we can read off the virtual dimension of a face

vdim = g(λ)− 1

2
|λ|2A110 −

1

8
|λ|(σ + σ̃)
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and of the integrand

#P2 = −1

2
|λ|g(ñ)− g(λ, ñ)− g(λ) +

1

8
|λ|(σ + σ̃).

Finally, we get the equality

#Tf = −1

2
|λ|2A110 −

1

2
|λ|g(ñ)− g(λ, ñ).

The last step is to show that ĝ(λ)− gf(λ) = −1
2 |λ|

2A110. We do this in three steps. First, the
identity

∑
2∈λ ℓ(ℓ+ 1)− i(i− 1) = 0 follows from the fact that, for every j, we have

λj−1∑
ℓ=0

ℓ(ℓ+ 1) =

λj∑
i=1

i(i− 1).

Taking the transpose of the diagram, we get a similar identity for the arm-length. Second, the
identity

1

2

∑
2∈λ

a + ℓ− (i+ j) = −|λ|

follows from computing the terms:
∑

2∈λ λj =
∑h

j=1 λ
2
j , where h is the height of first column;

∑
2∈λ

j =

ht∑
i=1

1

2
λt
i

(
λt
i + 1

)
,

where t denotes transpose and ht is the length of first row of λ;

∑
2∈λ

λt
i =

ht∑
i=1

(
λt
i

)2
,

∑
2∈λ

i =
h∑

j=1

1

2
λj(λj + 1).

Finally, we claim the identity∑
2∈λ

aℓ+ ij =
1

2
|λ|(|λ|+ 1).

These three steps together imply ĝ − g = −A110
1
2 |λ|

2.

Let us prove the claim by induction on the size of λ. It is true for λ = 1. Assume it is true for
|λ| = k. Let µ be the partition obtained from adding a box (p, q) to λ. Let us consider two types
of boxes (i, j) ∈ λ: first, the boxes with j = q have ℓµ = ℓλ + 1; second, the boxes with i = p
have aµ = aλ + 1. Correspondingly, we can write∑

2∈µ
aµℓµ + ij =

∑
2∈λ

aλℓλ + ij +
∑

j=q,i=1,...,λq

aλ +
∑

i=p,j=1,...,λt
p

ℓλ + (λq + 1)
(
λt
p + 1

)
,

where the last term comes from the box (p, q) itself. By the induction hypothesis, the first term
equals 1

2k(k + 1), while the sum of the last three terms equals k + 1. A way to see this is to
decompose λ as the sum of three terms: the rectangle generated by (p, q), which has λqλ

t
p boxes;

anything above it, which has λt
1 + · · ·+ λt

λq
− (q − 1)λq boxes; and anything to its right, which

has λ1 + · · ·+ λλt
p
− (p− 1)λt

p boxes. ■
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10 Perturbative matters

Definition 10.1. Define

T6 := µ̃/ν̃
∑
v∈∆0

1− q−ñ

P1234
.

Lemma 10.2. Fix any reference vertex v ∈ ∆0. Then T6 is a Laurent polynomial in µ̃ and the
local variables qa’s at v. It is movable since it is multiplied by µ̃. By the condition Q = 1, it is
a square root of T 2

6 in equation (3.3).

Proof. Set ν̃ = 1 without loss of generality. Up to complex conjugation, let us write

T6 = −µ̃∗
∑
v∈∆0

(
K̃ − qñK

)
and observe that in the right-hand side of

∑
v∈∆0

(
K̃ − qñK

)
=
∑
v∈∆0

(
K̃reg − qñKreg

)
+
∑
e∈∆1

∑
v∈e

π̃e,reg − qñπe,reg
Pe

+
∑
f∈∆2

∑
v∈f

λ̃ab,reg − qñλab

Pab
+
∑
c∈∆3

∑
v∈c

ñabc

Pabc
(10.1)

the first sum is clearly finite, in the second and third sums each summand in the differences is
finite once summed over vertices in the appropriate edge or face, while the last term is a sum of
integrals over compact cells in the β → 0 limit. ■

Remark 10.3. One can reabsorb all the terms in equation (10.1) except the last one by redefining
the vertex, edge and face, replacing schematically the term µ∗Xreg/P by µ̃∗X̃reg/P for X a solid,
plane or ordinary partition respectively and P the appropriate denominator.

Definition 10.4. Let

C := (−p)
−h4(ñ)+

1
2

1
24

c2,2,0(ñ)+
ζ(3)

(2π)3
c3,1,0

e−h3(ñ)+
1
24

c2,1,1(ñ)−h2(ñ)−h1(ñ)â(T6),

where the fugacity comes from the relevant summands in Lemma 4.2.

Define through ζ-function regularization

â

(
1− µ̃

P1234

)
:= µ̃− 1

2
ζ4PE

(
1− µ̃∗

P1234

)
,

where ζ4 =
∑∞

n1,n2,n3,n4=0 1, and let

Zpert :=
∏
v∈∆0

â

(
1− µ̃

P1234

)
.

This is the only infinite product left after reshuffling terms. We don’t need to worry about its
sign, as it multiplies the whole partition function. The rest of the instanton configuration is
given by the movable Laurent polynomial

I = T6 +
∑
v∈∆0

Tv +
∑
e∈∆1

Te +
∑
f∈∆2

Tf .
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11 Conclusions and a conjecture

We presented a construction, motivated by gauge theory, which allows us to define the K-theoretic
vertex of fourfolds for arbitrary asymptotics, in a combinatorial fashion and with concrete signs.

Conjecture 11.1. There exist sign choices sf
(
λ(f)
)
and se

(
π(e)

)
such that (1.4) reads

Z =
∑
P∈P

C
∏
v∈∆0

Vv

∏
e∈∆1

(−1)se(π
(e))Ee

∏
f∈∆2

(−1)sf(λ
(f))Ff , (11.1)

where the sum is over all collections of partitions

P =
{
P =

(
ñ(1), . . . , ñ(|∆3|);λ(1), . . . , λ(|∆2|);π(1)

reg, . . . , π
(|∆1|)
reg

) ∣∣
P is the profile of a fixed point

{
K̃v, v ∈ ∆0

}}
.

While the signs for the vertex V are determined in the present work, and the corresponding
part of the partition function is completely fixed, the interaction terms between edges and faces,
which are overall from the viewpoint of a vertex, as well as the signs for edge and face are not.
We plan to address this shortcoming, as well as present some examples, in part II.

Once we fix X, the partition function Z depends on the fugacities (see (1.3)), the mass µ̃, and
four Ω background parameters q1, q2, q3, q4 with product Q = 1 (one can choose a reference
vertex and express the local variables at the other vertices in terms of it). It may be possible to
prove (11.1) using derived algebraic geometry [11].
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