|
SIGMA 20 (2024), 107, 20 pages arXiv:2406.10947
https://doi.org/10.3842/SIGMA.2024.107
The Algebraic and Geometric Classification of Compatible Pre-Lie Algebras
Hani Abdelwahab a, Ivan Kaygorodov b and Abdenacer Makhlouf c
a) Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt
b) CMA-UBI, University of Beira Interior, Covilhã, Portugal
c) IRIMAS - Département de Mathématiques, University of Haute Alsace, Mulhouse, France
Received August 22, 2024, in final form November 18, 2024; Published online November 28, 2024
Abstract
In this paper, we develop a method to obtain the algebraic classification of compatible pre-Lie algebras from the classification of pre-Lie algebras of the same dimension. We use this method to obtain the algebraic classification of complex 2-dimensional compatible pre-Lie algebras. As a byproduct, we obtain the classification of complex 2-dimensional compatible commutative associative, compatible associative and compatible Novikov algebras. In addition, we consider the geometric classification of varieties of cited algebras, that is the description of its irreducible components.
Key words: compatible algebra; compatible associative algebra; compatible pre-Lie algebra; algebraic classification; geometric classification.
pdf (454 kb)
tex (25 kb)
References
- Abdelwahab H., Barreiro E., Calderón A.J., Fernández Ouaridi A., The algebraic classification and degenerations of nilpotent Poisson algebras, J. Algebra 615 (2023), 243-277.
- Abdelwahab H., Fernández O.A., Kaygorodov I., Degenerations of Poisson-type algebras, arXiv:2403.17193.
- Abdelwahab H., Fernández O.A., Martín González C., Degenerations of Poisson algebras, J. Algebra Appl., to appear, arXiv:2209.09150.
- Ben Hassine A., Chtioui T., Elhamdadi M., Mabrouk S., Cohomology and deformations of left-symmetric Rinehart algebras, Commun. Math. 32 (2024), 127-152, arXiv:2010.00335.
- Beneš T., Burde D., Degenerations of pre-Lie algebras, J. Math. Phys. 50 (2009), 112102, 9 pages, arXiv:0809.2188.
- Beneš T., Burde D., Classification of orbit closures in the variety of three-dimensional Novikov algebras, J. Algebra Appl. 13 (2014), 1350081, 33 pages, arXiv:1205.5714.
- Burde D., Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4 (2006), 323-357.
- Chapoton F., Livernet M., Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Not. 2001 (2001), 395-408, arXiv:math.QA/0002069.
- Chtioui T., Das A., Mabrouk S., (Co)homology of compatible associative algebras, Comm. Algebra 52 (2024), 582-603, arXiv:2107.09259.
- Das A., Compatible $L_\infty$-algebras, J. Algebra 610 (2022), 241-269, arXiv:2111.13306.
- Das A., Cohomology and deformations of compatible Hom-Lie algebras, J. Geom. Phys. 192 (2023), 104951, 14 pages, arXiv:2202.03137.
- Das A., Guo S., Qin Y., $L_\infty$-structures and cohomology theory of compatible $\mathcal{O}$-operators and compatible dendriform algebras, J. Math. Phys. 65 (2024), 031701, 22 pages, arXiv:2207.13980.
- Dotsenko V., Compatible associative products and trees, Algebra Number Theory 3 (2009), 567-586, arXiv:0809.1773.
- Dotsenko V., Ismailov N., Umirbaev U., Polynomial identities in Novikov algebras, Math. Z. 303 (2023), 60, 17 pages, arXiv:2209.13662.
- Ehret Q., Makhlouf A., On classification and deformations of Lie-Rinehart superalgebras, Commun. Math. 30 (2022), 67-100, arXiv:2107.11478.
- Eick B., Moede T., Computing subalgebras and $\mathbb Z_2$-gradings of simple Lie algebras over finite fields, Commun. Math. 30 (2022), 37-50, arXiv:2205.03155.
- Golubchik I.Z., Sokolov V.V., Compatible Lie brackets and integrable equations of the principal chiral field model type, Funct. Anal. Appl. 36 (2002), 172-181.
- Golubchik I.Z., Sokolov V.V., Compatible Lie brackets and the Yang-Baxter equation, Theoret. and Math. Phys. 146 (2006), 159-169.
- González D'León R.S., On the free Lie algebra with multiple brackets, Adv. Appl. Math. 79 (2016), 37-97, arXiv:1408.5415.
- Grunewald F., O'Halloran J., Varieties of nilpotent Lie algebras of dimension less than six, J. Algebra 112 (1988), 315-325.
- Hou S., Sheng Y., Zhou Y., Deformations, cohomologies and abelian extensions of compatible 3-Lie algebras, J. Geom. Phys. 202 (2024), 105218, 16 pages, arXiv:2208.12647.
- Kaygorodov I., Non-associative algebraic structures: classification and structure, Commun. Math. 32 (2024), 1-62, arXiv:2306.00425.
- Kaygorodov I., Khrypchenko M., Lopes S.A., The geometric classification of nilpotent algebras, J. Algebra 633 (2023), 857-886, arXiv:2102.10392.
- Kaygorodov I., Khrypchenko M., Páez-Guillán P., The geometric classification of non-associative algebras: a survey, arXiv:2410.10825.
- Kaygorodov I., Volkov Yu., The variety of two-dimensional algebras over an algebraically closed field, Canad. J. Math. 71 (2019), 819-842, arXiv:1701.08233.
- Khrypchenko M., $\sigma$-matching and interchangeable structures on certain associative algebras,Commun. Math. 33 (2025), 6, 25 pages, arXiv:2407.18734.
- Ladra M., Leite da Cunha B., Lopes S.A., A classification of nilpotent compatible Lie algebras, arXiv:2406.04036.
- Liu F., Combinatorial bases for multilinear parts of free algebras with two compatible brackets, J. Algebra 323 (2010), 132-166, arXiv:0808.3439.
- Liu J., Sheng Y., Bai C., $F$-manifold algebras and deformation quantization via pre-Lie algebras, J. Algebra 559 (2020), 467-495, arXiv:2002.10238.
- Liu J., Sheng Y., Bai C., Maurer-Cartan characterizations and cohomologies of compatible Lie algebras, Sci. China Math. 66 (2023), 1177-1198, arXiv:2102.04742.
- Lopes S.A., Noncommutative algebra and representation theory: symmetry, structure invariants, Commun. Math. 32 (2024), 63-117, arXiv:2307.16808.
- Mondal B., Saha R., Cohomology, deformations and extensions of Rota-Baxter Leibniz algebras, Commun. Math. 30 (2022), 93-117, arXiv:2208.00560.
- Odesskii A., Sokolov V., Algebraic structures connected with pairs of compatible associative algebras, Int. Math. Res. Not. 2006 (2006), 43734, 35 pages, arXiv:math.QA/0512499.
- Odesskii A., Sokolov V., Compatible Lie brackets related to elliptic curve, J. Math. Phys. 47 (2006), 013506, 14 pages, arXiv:math.QA/0506503.
- Odesskii A., Sokolov V., Integrable matrix equations related to pairs of compatible associative algebras, J. Phys. A 39 (2006), 12447-12456, arXiv:math.QA/0604574.
- Odesskii A., Sokolov V., Pairs of compatible associative algebras, classical Yang-Baxter equation and quiver representations, Comm. Math. Phys. 278 (2008), 83-99, arXiv:math.QA/0611200.
- Shalev A., Smoktunowicz A., From braces to pre-Lie rings, Proc. Amer. Math. Soc. 152 (2024), 1545-1559, arXiv:2207.03158.
- Smoktunowicz A., On the passage from finite braces to pre-Lie rings, Adv. Math. 409 (2022), 108683, 33 pages, arXiv:2202.00085.
- Strohmayer H., Operads of compatible structures and weighted partitions, J. Pure Appl. Algebra 212 (2008), 2522-2534, arXiv:0706.2196.
- Zhang H., Gao X., Guo L., Compatible structures of nonsymmetric operads, Manin products and Koszul duality, Appl. Categ. Structures 32 (2024), 2, 33 pages, arXiv:2311.11394.
|
|