Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 115, 30 pages      arXiv:2407.10404      https://doi.org/10.3842/SIGMA.2024.115

On the Higher-Rank Askey-Wilson Algebras

Wanxia Wang and Shilin Yang
School of Mathematics, Statistics and Mechanics, Beijing University of Technology, P.R. China

Received July 16, 2024, in final form December 15, 2024; Published online December 28, 2024

Abstract
In the paper, the algebra $\mathscr{A}(n)$, which is generated by an upper triangular generating matrix with triple relations, is introduced. It is shown that there exists an isomorphism between the algebra $\mathscr{A}(n)$ and the higher-rank Askey-Wilson algebra $\mathfrak{aw}(n)$ introduced by Crampé et al. Furthermore, we establish a series of automorphisms of $\mathscr{A}(n)$, which satisfy braid group relations and coincide with those in $\mathfrak{aw}(n)$.

Key words: Askey-Wilson algebra; braid group.

pdf (519 kb)   tex (29 kb)  

References

  1. Baseilhac P., Koizumi K., A deformed analogue of Onsager's symmetry in the $XXZ$ open spin chain, J. Stat. Mech. Theory Exp. 2005 (2005), P10005, 15 pages, arXiv:hep-th/0507053.
  2. Cooke J., Lacabanne A., Higher rank Askey-Wilson algebras as skein algebras, arXiv:2205.04414.
  3. Crampé N., Frappat L., Gaboriaud J., d'Andecy L.P., Ragoucy E., Vinet L., The Askey-Wilson algebra and its avatars, J. Phys. A 54 (2021), 063001, 32 pages, arXiv:2009.14815.
  4. Crampé N., Frappat L., Poulain d'Andecy L., Ragoucy E., The higher-rank Askey-Wilson algebra and its braid group automorphisms, SIGMA 19 (2023), 077, 36 pages, arXiv:2303.17677.
  5. Crampé N., Gaboriaud J., Vinet L., Zaimi M., Revisiting the Askey-Wilson algebra with the universal $R$-matrix of $\mathrm{U}_q(\mathfrak{sl}_2)$, J. Phys. A 53 (2020), 05LT01, 10 pages, arXiv:1908.04806.
  6. Crampé N., Vinet L., Zaimi M., Temperley-Lieb, Birman-Murakami-Wenzl and Askey-Wilson algebras and other centralizers of $U_q(\mathfrak{sl}_2)$, Ann. Henri Poincaré 22 (2021), 3499-3528, arXiv:2008.04905.
  7. De Bie H., De Clercq H., van de Vijver W., The higher rank $q$-deformed Bannai-Ito and Askey-Wilson algebra, Comm. Math. Phys. 374 (2020), 277-316, arXiv:1805.06642.
  8. De Bie H., van de Vijver W., A discrete realization of the higher rank Racah algebra, Constr. Approx. 52 (2020), 1-29, arXiv:1808.10520.
  9. De Clercq H., Higher rank relations for the Askey-Wilson and $q$-Bannai-Ito algebra, SIGMA 15 (2019), 099, 32 pages, arXiv:1908.11654.
  10. Groenevelt W., Wagenaar C., An Askey-Wilson algebra of rank 2, SIGMA 19 (2023), 008, 35 pages, arXiv:2206.03986.
  11. Huang H.-W., Finite-dimensional irreducible modules of the universal Askey-Wilson algebra, Comm. Math. Phys. 340 (2015), 959-984, arXiv:1210.1740.
  12. Huang H.-W., Finite-dimensional irreducible modules of the universal Askey-Wilson algebra at roots of unity, J. Algebra 569 (2021), 12-29, arXiv:1906.01776.
  13. Koelink E., Stokman J.V., The Askey-Wilson function transform, Internat. Math. Res. Notices 2001 (2001), 1203-1227, arXiv:math.CA/0004053.
  14. Koornwinder T.H., The relationship between Zhedanov's algebra ${\rm AW}(3)$ and the double affine Hecke algebra in the rank one case, SIGMA 3 (2007), 063, 15 pages, arXiv:math.QA/0612730.
  15. Koornwinder T.H., Zhedanov's algebra $\rm AW(3)$ and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra, SIGMA 4 (2008), 052, 17 pages, arXiv:0711.2320.
  16. Lavrenov A., On Askey-Wilson algebra, Czechoslovak J. Phys. 47 (1997), 1213-1219.
  17. Post S., Walter A., A higher rank extension of the Askey-Wilson algebra, arXiv:1705.01860.
  18. Terwilliger P., The universal Askey-Wilson algebra, SIGMA 7 (2011), 069, 24 pages, arXiv:1104.2813.
  19. Terwilliger P., Vidunas R., Leonard pairs and the Askey-Wilson relations, J. Algebra Appl. 3 (2004), 411-426, arXiv:math.QA/0305356.
  20. Zhedanov A.S., ''Hidden symmetry'' of Askey-Wilson polynomials, Theoret. and Math. Phys. 89 (1991), 1146-1157.

Previous article  Contents of Volume 20 (2024)