Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 001, 15 pages      arXiv:2403.15968      https://doi.org/10.3842/SIGMA.2025.001

Symplectic Differential Reduction Algebras and Generalized Weyl Algebras

Jonas T. Hartwig a and Dwight Anderson Williams II b
a) Department of Mathematics, Iowa State University, Ames, IA 50011, USA
b) Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA

Received March 27, 2024, in final form December 23, 2024; Published online January 01, 2025

Abstract
Given a map $\Xi\colon U(\mathfrak{g})\rightarrow A$ of associative algebras, with $U(\mathfrak{g})$ the universal enveloping algebra of a (complex) finite-dimensional reductive Lie algebra $\mathfrak{g}$, the restriction functor from $A$-modules to $U(\mathfrak{g})$-modules is intimately tied to the representation theory of an $A$-subquotient known as the reduction algebra with respect to $(A,\mathfrak{g},\Xi)$. Herlemont and Ogievetsky described differential reduction algebras for the general linear Lie algebra $\mathfrak{gl}(n)$ as algebras of deformed differential operators. Their map $\Xi$ is a realization of $\mathfrak{gl}(n)$ in the $N$-fold tensor product of the $n$-th Weyl algebra tensored with $U(\mathfrak{gl}(n))$. In this paper, we further the study of differential reduction algebras by finding a presentation in the case when $\mathfrak{g}$ is the symplectic Lie algebra of rank two and $\Xi$ is a canonical realization of $\mathfrak{g}$ inside the second Weyl algebra tensor the universal enveloping algebra of $\mathfrak{g}$, suitably localized. Furthermore, we prove that this differential reduction algebra is a generalized Weyl algebra (GWA), in the sense of Bavula, of a new type we term skew-affine. It is believed that symplectic differential reduction algebras are all skew-affine GWAs; then their irreducible weight modules could be obtained from standard GWA techniques.

Key words: Mickelsson algebras; Zhelobenko algebras; skew affine; quantum deformation; differential operators.

pdf (515 kb)   tex (54 kb)  

References

  1. Andreotti A., Généralités sur les catégories abéliennes (suite), Séminaire A. Grothendieck 1 (1957), 1-16.
  2. Asherova R.M., Smirnov J.F., Tolstoy V.N., Projection operators for simple Lie groups. II. General scheme for constructing lowering operators. The groups ${\rm SU}(n)$, Theoret. and Math. Phys. 15 (1973), 392-401.
  3. Ashton T., Mudrov A., R-matrix and Mickelsson algebras for orthosymplectic quantum groups, J. Math. Phys. 56 (2015), 081701, 8 pages, arXiv:1410.6493.
  4. Bavula V.V., Generalized Weyl algebras and their representations, St. Petersburg Math. J. 4 (1993), 71-92.
  5. Benkart G., Roby T., Down-up algebras, J. Algebra 209 (1998), 305-344, arXiv:math.RT/9803159.
  6. Böhm G., Hopf algebroids, in Handbook of Algebra, Handb. Algebr., Vol. 6, Elsevier, Amsterdam, 2009, 173-235, arXiv:0805.3806.
  7. Conley C.H., Bounded length 3 representations of the Virasoro Lie algebra, Internat. Math. Res. Notices (2001), 609-628.
  8. Conley C.H., Conformal symbols and the action of contact vector fields over the superline, J. Reine Angew. Math. 633 (2009), 115-163, arXiv:0712.1780.
  9. De Bie H., Eelbode D., Roels M., The harmonic transvector algebra in two vector variables, J. Algebra 473 (2017), 247-282, arXiv:1510.06566.
  10. Dixmier J., Enveloping algebras, Grad. Stud. Math., Vol. 11, American Mathematical Society, Providence, RI, 1996.
  11. Gaddis J., The Weyl algebra and its friends: A survey, arXiv:2305.01609.
  12. Hartwig J.T., Noncommutative fiber products and lattice models, J. Algebra 508 (2018), 35-80, arXiv:1612.08125.
  13. Hartwig J.T., Williams II D.A., Diagonal reduction algebra for $\mathfrak{osp}(1|2)$, Theoret. and Math. Phys. 210 (2022), 155-171, arXiv:2106.04380.
  14. Hartwig J.T., Williams II D.A., Ghost center and representations of the diagonal reduction algebra of $\mathfrak{osp}(1|2)$, J. Geom. Phys. 187 (2023), 104788, 20 pages, arXiv:2203.08068.
  15. Havlívcek M., Lassner W., Canonical realizations of the Lie algebras $\mathfrak{gl}(n,\mathbb{R})$ and $\mathfrak{sl}(n,\mathbb{R})$. I. Formulae and classification, Rep. Math. Phys. 8 (1975), 391-399.
  16. Havlívcek M., Lassner W., Canonical realizations of the Lie algebra $\mathfrak{sp}(2n, \mathbb{R})$, Internat. J. Theoret. Phys. 15 (1976), 867-876.
  17. Herlemont B., Differential calculus on $\mathbf{h}$-deformed spaces, Ph.D. Thesis, Aix-Marseille Université, 2017, arXiv:1802.01357.
  18. Herlemont B., Ogievetsky O., Differential calculus on $\bf h$-deformed spaces, SIGMA 13 (2017), 082, 28 pages, arXiv:1704.05330.
  19. Ito K., The classification of convex orders on affine root systems,Comm. Algebra 29 (2001), 5605-5630, arXiv:math.QA/9912020.
  20. Jacobson N., Non-commutative polynomials and cyclic algebras, Ann. of Math. 35 (1934), 197-208.
  21. Kac V.G., Classification of simple Lie superalgebras, Funct. Anal. Appl. 9 (1979), 263-265.
  22. Khoroshkin S., Ogievetsky O., Mickelsson algebras and Zhelobenko operators, J. Algebra 319 (2008), 2113-2165, arXiv:math.QA/0606259.
  23. Löwdin P.-O., Angular momentum wavefunctions constructed by projector operators, Rev. Modern Phys. 36 (1964), 966-976.
  24. Mazorchuk V., Ponomarenko M., Turowska L., Some associative algebras related to $U(\mathfrak g)$ and twisted generalized Weyl algebras, Math. Scand. 92 (2003), 5-30.
  25. Mickelsson J., Step algebras of semi-simple subalgebras of Lie algebras, Rep. Mathematical Phys. 4 (1973), 307-318.
  26. Ogievetsky O.V., Herlemont B., Rings of $\bf h$-deformed differential operators, Theoret. and Math. Phys. 192 (2017), 1218-1229, arXiv:1612.08001.
  27. Ogievetsky O., Khoroshkin S., Diagonal reduction algebras of $\mathfrak{gl}$ type, Funct. Anal. Appl. 44 (2010), 182-198, arXiv:0912.4055.
  28. Sevostyanov A., The geometric meaning of Zhelobenko operators, Transform. Groups 18 (2013), 865-875, arXiv:1206.3947.
  29. Tolstoy V.N., Fortieth anniversary of extremal projector method for Lie symmetries, in Noncommutative Geometry and Representation Theory in Mathematical Physics, Contemp. Math., Vol. 391, American Mathematical Society, Providence, RI, 2005, 371-384, arXiv:math-ph/0412087.
  30. van den Hombergh A., Harish-Chandra modules and representations of step algebra, Ph.D. Thesis, Katolic University of Nijmegen, 1976, available at http://hdl.handle.net/2066/147527.
  31. van den Hombergh A., A note on Mickelsson's step algebra, Indag. Math. 78 (1975), 42-47.
  32. Williams II D.A., Bases of infinite-dimensional representations of orthosymplectic Lie superalgebras, Ph.D. Thesis, The University of Texas at Arlington, 2020, available at http://hdl.handle.net/10106/29148.
  33. Williams II D.A., Action of $\mathfrak{osp}(1|2n)$ on polynomials tensor $\mathbb{C}^{0|2n}$, arXiv:2408.12324.
  34. Zhelobenko D.P., On Gelfand-Zetlin bases for classical Lie algebras, in Representations of Lie Groups and Lie Algebras (Budapest, 1971), Akadémiai Kiadó, Budapest, 1985, 79-106.
  35. Zhelobenko D.P., Extremal projectors and generalized Mickelsson algebras on reductive Lie algebras, Math. USSR Izv. 33 (1989), 85-100.
  36. Zhelobenko D.P., Hypersymmetries of extremal equations, Nova J. Theor. Phys. 5 (1997), 243-258.
  37. Zhelobenko D.P., Principal structures and methods of representation theory, Transl. Math. Monogr., Vol. 228, American Mathematical Society, Providence, RI, 2006.

Next article  Contents of Volume 21 (2025)