|
SIGMA 21 (2025), 002, 41 pages arXiv:2405.07692
https://doi.org/10.3842/SIGMA.2025.002
Holography of Higher Codimension Submanifolds: Riemannian and Conformal
Samuel Blitz and Josef Šilhan
Department of Mathematics and Statistics, Masaryk University, Building 08, Kotlářská 2, Czech Republic
Received June 01, 2024, in final form December 16, 2024; Published online January 04, 2025
Abstract
We provide a natural generalization to submanifolds of the holographic method used to extract higher-order local invariants of both Riemannian and conformal embeddings, some of which depend on a choice of parallelization of the normal bundle. Qualitatively new behavior is observed in the higher-codimension case, giving rise to new invariants that obstruct the order-by-order construction of unit defining maps. In the conformal setting, a novel invariant (that vanishes in codimension 1) is realized as the leading transverse-order term appearing in a holographically-constructed Willmore invariant. Using these same tools, we also investigate the formal solutions to extension problems off of an embedded submanifold.
Key words: Riemannian geometry; conformal geometry; submanifold embeddings; holography.
pdf (563 kb)
tex (52 kb)
References
- Andersson L., Chruściel P.T., Friedrich H., On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein's field equations, Comm. Math. Phys. 149 (1992), 587-612.
- Aviles P., McOwen R.C., Complete conformal metrics with negative scalar curvature in compact Riemannian manifolds, Duke Math. J. 56 (1988), 395-398.
- Bailey T.N., Eastwood M.G., Gover A.R., Thomas's structure bundle for conformal, projective and related structures, Rocky Mountain J. Math. 24 (1994), 1191-1217.
- Bishop R.L., There is more than one way to frame a curve, Amer. Math. Monthly 82 (1975), 246-251.
- Blitz S., Gover A.R., Waldron A., Conformal fundamental forms and the asymptotically Poincaré-Einstein condition, Indiana Univ. Math. J. 72 (2023), 2215-2284, arXiv:2107.10381.
- Čap A., Gover A.R., Tractor bundles for irreducible parabolic geometries, in Global Analysis and Harmonic Analysis (Marseille-Luminy, 1999), Sémin. Congr., Vol. 4, Soc. Math. France, Paris, 2000, 129-154.
- Čap A., Gover A.R., Standard tractors and the conformal ambient metric construction, Ann. Global Anal. Geom. 24 (2003), 231-259, arXiv:math.DG/0207016.
- Cartan É., Les espaces à connexion conforme, Ann. Soc. Pol. Math. 2 (1923), 171-221.
- Case J.S., Graham C.R., Kuo T.-M., Tyrrell A.J., Waldron A., A Gauss-Bonnet formula for the renormalized area of minimal submanifolds of Poincaré-Einstein manifolds, arXiv:2403.16710.
- Curry S.N., Gover A.R., Snell D., Conformal submanifolds, distinguished submanifolds, and integrability, arXiv:2309.09361.
- Fefferman C., Graham C.R., The ambient metric, Ann. of Math. Stud., Vol. 178, Princeton University Press, Princeton, NJ, 2012.
- Fialkow A., The conformal theory of curves, Proc. Natl. Acad. Sci. USA 26 (1940), 437-439.
- Fialkow A., Conformal differential geometry of a subspace, Trans. Amer. Math. Soc. 56 (1944), 309-433.
- Glaros M., Gover A.R., Halbasch M., Waldron A., Variational calculus for hypersurface functionals: singular Yamabe problem Willmore energies, J. Geom. Phys. 138 (2019), 168-193.
- Gover A.R., Almost Einstein and Poincaré-Einstein manifolds in Riemannian signature, J. Geom. Phys. 60 (2010), 182-204, arXiv:0803.3510.
- Gover A.R., Latini E., Waldron A., Poincaré-Einstein holography for forms via conformal geometry in the bulk, Mem. Amer. Math. Soc. 235 (2015), vi+95 pages, arXiv:1205.3489.
- Gover A.R., Peterson L.J., Conformally invariant powers of the Laplacian, $Q$-curvature, and tractor calculus, Comm. Math. Phys. 235 (2003), 339-378, arXiv:math-ph/0201030.
- Gover A.R., Waldron A., The $\mathfrak{so}(d+2,2)$ minimal representation and ambient tractors: the conformal geometry of momentum space, Adv. Theor. Math. Phys. 13 (2009), 1875-1894, arXiv:0903.1394.
- Gover A.R., Waldron A., Boundary calculus for conformally compact manifolds, Indiana Univ. Math. J. 63 (2014), 119-163, arXiv:1104.2991.
- Gover A.R., Waldron A., Submanifold conformal invariants and a boundary Yamabe problem, in Extended Abstracts Fall 2013—Geometrical Analysis, Type Theory, Homotopy Theory and Univalent Foundations, Trends Math. Res. Perspect. CRM Barc., Vol. 3, Birkhäuser, Cham, 2015, 21-26, arXiv:1407.6742.
- Gover A.R., Waldron A., A calculus for conformal hypersurfaces and new higher Willmore energy functionals, Adv. Geom. 20 (2020), 29-60, arXiv:1611.04055.
- Gover A.R., Waldron A., Conformal hypersurface geometry via a boundary Loewner-Nirenberg-Yamabe problem, Comm. Anal. Geom. 29 (2021), 779-836, arXiv:1506.02723.
- Graham C.R., Reichert N., Higher-dimensional Willmore energies via minimal submanifold asymptotics, Asian J. Math. 24 (2020), 571-610, arXiv:1704.03852.
- Graham C.R., Zworski M., Scattering matrix in conformal geometry, Invent. Math. 152 (2003), 89-118, arXiv:math.DG/0109089.
- Gray A., The volume of a small geodesic ball of a Riemannian manifold, Michigan Math. J. 20 (1974), 329-344.
- Gray A., Tubes, 2nd ed., Progr. Math., Vol. 221, Birkhäuser, Basel, 2004.
- Gribov V.N., Quantization of non-Abelian gauge theories, Nuclear Phys. B 139 (1978), 1-19.
- Hájíček P., Stationary electrovacuum spacetimes with bifurcate horizons, J. Math. Phys. 16 (1975), 518-522.
- Hájívcek P., Exact models of charged black holes. I. Geometry of totally geodesic null hypersurface, Comm. Math. Phys. 34 (1973), 37-52.
- Henningson M., Skenderis K., The holographic Weyl anomaly, J. High Energy Phys. 1998 (1998), no. 7, 023, 12 pages, arXiv:hep-th/9806087.
- Loewner C., Nirenberg L., Partial differential equations invariant under conformal or projective transformations, in Contributions to Analysis (a Collection of Papers Dedicated to Lipman Bers), Academic Press, New York, 1974, 245-272.
- Maldacena J., The large $N$ limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998), 231-252, arXiv:hep-th/9711200.
- Mazzeo R., Regularity for the singular Yamabe problem, Indiana Univ. Math. J. 40 (1991), 1277-1299.
- Mondino A., Nguyen H.T., Global conformal invariants of submanifolds, Ann. Inst. Fourier (Grenoble) 68 (2018), 2663-2695, arXiv:1501.07527.
- Šilhan J., Zádník V., Conformal theory of curves with tractors, J. Math. Anal. Appl. 473 (2019), 112-140, arXiv:1805.00422.
- Spivak M., A comprehensive introduction to differential geometry. Vol. I, 2nd ed., Publish or Perish, Wilmington, DE, 1979.
- Thomas T.Y., On conformal geometry, Proc. Natl. Acad. Sci. USA 12 (1926), 352-359.
- Uhlenbeck K.K., Connections with $L^{p}$ bounds on curvature, Comm. Math. Phys. 83 (1982), 31-42.
- van Baal P., More (thoughts on) Gribov copies, Nuclear Phys. B 369 (1992), 259-275.
- Wang W., Jüttler B., Zheng D., Liu Y., Computation of rotation minimizing frames, ACM Trans. Graph. 27 (2008), 1-18.
- Willmore T.J., Note on embedded surfaces, An. Şti. Univ. ''Al. I. Cuza'' Iaşi Secţ. I a Mat. (N.S.) 11B (1965), 493-496.
- Yang P., Chang S.-Y.A., Qing J., On the renormalized volumes for conformally compact Einstein manifolds, J. Math. Sci. 149 (2008), 1755-1769, arXiv:math.DG/0512376.
|
|