Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 003, 21 pages      arXiv:2405.03533      https://doi.org/10.3842/SIGMA.2025.003

Comomentum Sections and Poisson Maps in Hamiltonian Lie Algebroids

Yuji Hirota a and Noriaki Ikeda b
a) Division of Integrated Science, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
b) Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

Received June 16, 2024, in final form December 29, 2024; Published online January 05, 2025

Abstract
In a Hamiltonian Lie algebroid over a pre-symplectic manifold and over a Poisson manifold, we introduce a map corresponding to a comomentum map, called a comomentum section. We show that the comomentum section gives a Lie algebroid morphism among Lie algebroids. Moreover, we prove that a momentum section on a Hamiltonian Lie algebroid is a Poisson map between proper Poisson manifolds, which is a generalization that a momentum map is a Poisson map between the symplectic manifold to dual of the Lie algebra. Finally, a momentum section is reinterpreted as a Dirac morphism on Dirac structures.

Key words: Poisson geometry; momentum maps; Poisson maps; Dirac structures.

pdf (482 kb)   tex (30 kb)  

References

  1. Abad C.A., Crainic M., Representations up to homotopy of Lie algebroids, J. Reine Angew. Math. 663 (2012), 91-126, arXiv:0901.0319.
  2. Alekseev A., Bursztyn H., Meinrenken E., Pure spinors on Lie groups, Astérisque 327 (2009), 131-199, arXiv:0709.1452.
  3. Alekseev A., Strobl T., Current algebras and differential geometry, J. High Energy Phys. 2005 (2005), no. 035, 14 pages, arXiv:hep-th/0410183.
  4. Almeida R., Molino P., Suites d'Atiyah, feuilletages et quantification géométrique, in Sémin. Géom. Différ., Universite des Sciences et Techniques du Languedoc, 1985, 39-59.
  5. Blaom A.D., Geometric structures as deformed infinitesimal symmetries, Trans. Amer. Math. Soc. 358 (2006), 3651-3671, arXiv:math.DG/0404313.
  6. Blohmann C., Fernandes M.C.B., Weinstein A., Groupoid symmetry and constraints in general relativity, Commun. Contemp. Math. 15 (2013), 1250061, 25 pages, arXiv:1003.2857.
  7. Blohmann C., Ronchi S., Weinstein A., Hamiltonian Lie algebroids over Poisson manifolds, J. Symplectic Geom. 22 (2024), 695-733, arXiv:2304.03503.
  8. Blohmann C., Weinstein A., Hamiltonian Lie algebroids, Mem. Amer. Math. Soc. 295 (2024), vi+99 pp., arXiv:1811.11109.
  9. Bursztyn H., Crainic M., Dirac structures, momentum maps, and quasi-Poisson manifolds, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., Vol. 232, Birkhäuser, Boston, MA, 2005, 1-40, arXiv:math.DG/0310445.
  10. Bursztyn H., Crainic M., Dirac geometry, quasi-Poisson actions and $D/G$-valued moment maps, J. Differential Geom. 82 (2009), 501-566, arXiv:0710.0639.
  11. Bursztyn H., Iglesias Ponte D., Ševera P., Courant morphisms and moment maps, Math. Res. Lett. 16 (2009), 215-232, arXiv:0801.1663.
  12. Cattaneo A.S., Felder G., Poisson sigma models and symplectic groupoids, in Quantization of Singular Symplectic Quotients, Progr. Math., Vol. 198, Birkhäuser, Basel, 2001, 61-93, arXiv:math.SG/0003023.
  13. Cattaneo A.S., Schätz F., Introduction to supergeometry, Rev. Math. Phys. 23 (2011), 669-690, arXiv:1011.3401.
  14. Courant T.J., Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990), 631-661.
  15. Crainic M., Fernandes R.L., Lectures on integrability of Lie brackets, in Lectures on Poisson Geometry, Geom. Topol. Monogr., Vol. 17, Geometry & Topology Publications, Coventry, 2011, 1-107, arXiv:math.DG/0611259.
  16. Crainic M., Fernandes R.L., Mărcuţ I., Lectures on Poisson geometry, Grad. Stud. Math., Vol. 217, American Mathematical Society, Providence, RI, 2021.
  17. Dufour J.-P., Zung N.T., Poisson structures and their normal forms, Progr. Math., Vol. 242, Birkhäuser, Basel, 2005.
  18. Hirota Y., Ikeda N., Homotopy momentum sections on multisymplectic manifolds, J. Geom. Phys. 182 (2022), 104667, 16 pages, arXiv:2110.12305.
  19. Hirota Y., Ikeda N., Geometry of bundle-valued multisymplectic structures with Lie algebroids, J. Geom. Phys. 203 (2024), 105242, 21 pages, arXiv:2312.02499.
  20. Ikeda N., Hamilton Lie algebroids over Dirac structures and sigma models, arXiv:2309.10996.
  21. Ikeda N., Lectures on AKSZ sigma models for physicists, in Noncommutative Geometry and Physics. 4, World Scientific Publishing, Hackensack, NJ, 2017, 79-169, arXiv:1204.3714.
  22. Ikeda N., Momentum sections in Hamiltonian mechanics and sigma models, SIGMA 15 (2019), 076, 16 pages, arXiv:1905.02434.
  23. Ikeda N., Momentum section on Courant algebroid and constrained Hamiltonian mechanics, J. Geom. Phys. 170 (2021), 104350, 20 pages, arXiv:2104.12091.
  24. Kirillov A.A., Lectures on the orbit method, Grad. Stud. Math., Vol. 64, American Mathematical Society, Providence, RI, 2004.
  25. Kotov A., Strobl T., Lie algebroids, gauge theories, and compatible geometrical structures, Rev. Math. Phys. 31 (2019), 1950015, 31 pages, arXiv:1603.04490.
  26. Liu Z.-J., Weinstein A., Xu P., Manin triples for Lie bialgebroids, J. Differential Geom. 45 (1997), 547-574.
  27. Mackenzie K., Lie groupoids and Lie algebroids in differential geometry, London Math. Soc. Lecture Note Ser., Vol. 124, Cambridge University Press, Cambridge, 1987.
  28. Marsden J., Ratiu T., Reduction of Poisson manifolds, Lett. Math. Phys. 11 (1986), 161-169.
  29. Marsden J., Weinstein A., Reduction of symplectic manifolds with symmetry, Rep. Math. Phys. 5 (1974), 121-130.
  30. Meinrencken E., Introduction to Poisson geometry, Lecture notes, 2017.
  31. Meyer K.R., Symmetries and integrals in mechanics, in Dynamical Systems, Academic Press, New York, 1973, 259-272.
  32. Roytenberg D., AKSZ-BV formalism and Courant algebroid-induced topological field theories, Lett. Math. Phys. 79 (2007), 143-159, arXiv:hep-th/0608150.
  33. Vaintrob A.Yu., Lie algebroids and homological vector fields, Russian Math. Surveys 52 (1997), 428-429.

Previous article  Next article  Contents of Volume 21 (2025)