|
SIGMA 21 (2025), 003, 21 pages arXiv:2405.03533
https://doi.org/10.3842/SIGMA.2025.003
Comomentum Sections and Poisson Maps in Hamiltonian Lie Algebroids
Yuji Hirota a and Noriaki Ikeda b
a) Division of Integrated Science, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
b) Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
Received June 16, 2024, in final form December 29, 2024; Published online January 05, 2025
Abstract
In a Hamiltonian Lie algebroid over a pre-symplectic manifold and over a Poisson manifold, we introduce a map corresponding to a comomentum map, called a comomentum section. We show that the comomentum section gives a Lie algebroid morphism among Lie algebroids. Moreover, we prove that a momentum section on a Hamiltonian Lie algebroid is a Poisson map between proper Poisson manifolds, which is a generalization that a momentum map is a Poisson map between the symplectic manifold to dual of the Lie algebra. Finally, a momentum section is reinterpreted as a Dirac morphism on Dirac structures.
Key words: Poisson geometry; momentum maps; Poisson maps; Dirac structures.
pdf (482 kb)
tex (30 kb)
References
- Abad C.A., Crainic M., Representations up to homotopy of Lie algebroids, J. Reine Angew. Math. 663 (2012), 91-126, arXiv:0901.0319.
- Alekseev A., Bursztyn H., Meinrenken E., Pure spinors on Lie groups, Astérisque 327 (2009), 131-199, arXiv:0709.1452.
- Alekseev A., Strobl T., Current algebras and differential geometry, J. High Energy Phys. 2005 (2005), no. 035, 14 pages, arXiv:hep-th/0410183.
- Almeida R., Molino P., Suites d'Atiyah, feuilletages et quantification géométrique, in Sémin. Géom. Différ., Universite des Sciences et Techniques du Languedoc, 1985, 39-59.
- Blaom A.D., Geometric structures as deformed infinitesimal symmetries, Trans. Amer. Math. Soc. 358 (2006), 3651-3671, arXiv:math.DG/0404313.
- Blohmann C., Fernandes M.C.B., Weinstein A., Groupoid symmetry and constraints in general relativity, Commun. Contemp. Math. 15 (2013), 1250061, 25 pages, arXiv:1003.2857.
- Blohmann C., Ronchi S., Weinstein A., Hamiltonian Lie algebroids over Poisson manifolds, J. Symplectic Geom. 22 (2024), 695-733, arXiv:2304.03503.
- Blohmann C., Weinstein A., Hamiltonian Lie algebroids, Mem. Amer. Math. Soc. 295 (2024), vi+99 pp., arXiv:1811.11109.
- Bursztyn H., Crainic M., Dirac structures, momentum maps, and quasi-Poisson manifolds, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., Vol. 232, Birkhäuser, Boston, MA, 2005, 1-40, arXiv:math.DG/0310445.
- Bursztyn H., Crainic M., Dirac geometry, quasi-Poisson actions and $D/G$-valued moment maps, J. Differential Geom. 82 (2009), 501-566, arXiv:0710.0639.
- Bursztyn H., Iglesias Ponte D., Ševera P., Courant morphisms and moment maps, Math. Res. Lett. 16 (2009), 215-232, arXiv:0801.1663.
- Cattaneo A.S., Felder G., Poisson sigma models and symplectic groupoids, in Quantization of Singular Symplectic Quotients, Progr. Math., Vol. 198, Birkhäuser, Basel, 2001, 61-93, arXiv:math.SG/0003023.
- Cattaneo A.S., Schätz F., Introduction to supergeometry, Rev. Math. Phys. 23 (2011), 669-690, arXiv:1011.3401.
- Courant T.J., Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990), 631-661.
- Crainic M., Fernandes R.L., Lectures on integrability of Lie brackets, in Lectures on Poisson Geometry, Geom. Topol. Monogr., Vol. 17, Geometry & Topology Publications, Coventry, 2011, 1-107, arXiv:math.DG/0611259.
- Crainic M., Fernandes R.L., Mărcuţ I., Lectures on Poisson geometry, Grad. Stud. Math., Vol. 217, American Mathematical Society, Providence, RI, 2021.
- Dufour J.-P., Zung N.T., Poisson structures and their normal forms, Progr. Math., Vol. 242, Birkhäuser, Basel, 2005.
- Hirota Y., Ikeda N., Homotopy momentum sections on multisymplectic manifolds, J. Geom. Phys. 182 (2022), 104667, 16 pages, arXiv:2110.12305.
- Hirota Y., Ikeda N., Geometry of bundle-valued multisymplectic structures with Lie algebroids, J. Geom. Phys. 203 (2024), 105242, 21 pages, arXiv:2312.02499.
- Ikeda N., Hamilton Lie algebroids over Dirac structures and sigma models, arXiv:2309.10996.
- Ikeda N., Lectures on AKSZ sigma models for physicists, in Noncommutative Geometry and Physics. 4, World Scientific Publishing, Hackensack, NJ, 2017, 79-169, arXiv:1204.3714.
- Ikeda N., Momentum sections in Hamiltonian mechanics and sigma models, SIGMA 15 (2019), 076, 16 pages, arXiv:1905.02434.
- Ikeda N., Momentum section on Courant algebroid and constrained Hamiltonian mechanics, J. Geom. Phys. 170 (2021), 104350, 20 pages, arXiv:2104.12091.
- Kirillov A.A., Lectures on the orbit method, Grad. Stud. Math., Vol. 64, American Mathematical Society, Providence, RI, 2004.
- Kotov A., Strobl T., Lie algebroids, gauge theories, and compatible geometrical structures, Rev. Math. Phys. 31 (2019), 1950015, 31 pages, arXiv:1603.04490.
- Liu Z.-J., Weinstein A., Xu P., Manin triples for Lie bialgebroids, J. Differential Geom. 45 (1997), 547-574.
- Mackenzie K., Lie groupoids and Lie algebroids in differential geometry, London Math. Soc. Lecture Note Ser., Vol. 124, Cambridge University Press, Cambridge, 1987.
- Marsden J., Ratiu T., Reduction of Poisson manifolds, Lett. Math. Phys. 11 (1986), 161-169.
- Marsden J., Weinstein A., Reduction of symplectic manifolds with symmetry, Rep. Math. Phys. 5 (1974), 121-130.
- Meinrencken E., Introduction to Poisson geometry, Lecture notes, 2017.
- Meyer K.R., Symmetries and integrals in mechanics, in Dynamical Systems, Academic Press, New York, 1973, 259-272.
- Roytenberg D., AKSZ-BV formalism and Courant algebroid-induced topological field theories, Lett. Math. Phys. 79 (2007), 143-159, arXiv:hep-th/0608150.
- Vaintrob A.Yu., Lie algebroids and homological vector fields, Russian Math. Surveys 52 (1997), 428-429.
|
|