Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 004, 74 pages      arXiv:2308.03265      https://doi.org/10.3842/SIGMA.2025.004

Quantum Modularity for a Closed Hyperbolic 3-Manifold

Campbell Wheeler
Institut des Hautes Études Scientifiques, Le Bois-Marie, Bures-sur-Yvette, France

Received January 11, 2024, in final form December 23, 2024; Published online January 08, 2025

Abstract
This paper proves quantum modularity of both functions from $\mathbb{Q}$ and $q$-series associated to the closed manifold obtained by $-\smash{\frac{1}{2}}$ surgery on the figure-eight knot, $4_1(-1,2)$. In a sense, this is a companion to work of Garoufalidis-Zagier, where similar statements were studied in detail for some simple knots. It is shown that quantum modularity for closed manifolds provides a unification of Chen-Yang's volume conjecture with Witten's asymptotic expansion conjecture. Additionally we show that $4_1(-1,2)$ is a counterexample to previous conjectures of Gukov-Manolescu relating the Witten-Reshetikhin-Turaev invariant and the $\smash{\widehat{Z}(q)}$ series. This could be reformulated in terms of a ''strange identity'', which gives a volume conjecture for the $\smash{\widehat{Z}}$ invariant. Using factorisation of state integrals, we give conjectural but precise $q$-hypergeometric formulae for generating series of Stokes constants of this manifold. We find that the generating series of Stokes constants is related to the 3d index of $4_1(-1,2)$ proposed by Gang-Yonekura. This extends the equivalent conjecture of Garoufalidis-Gu-Mariño for knots to closed manifolds. This work appeared in a similar form in the author's Ph.D. Thesis.

Key words: 3d index; asymptotic expansions; Borel resummation; character varieties; Chern-Simons invariants; circle method; closed three-manifolds; cocycles; dilogarithm; duality; Faddeev quantum dilogarithm; factorisation; flat connections; hyperbolic manifolds; modularity; perturbative invariants; $q$-difference equations; $q$-hypergeometric functions; quadratic relations; quantum invariants; quantum modular forms; resurgence; surgery; state integrals; stationary phase; Stokes constants; Stokes phenomenon; strange identity; three-manifolds; volume conjecture; Witten-Reshetikhin-Turaev invariants; $\smash{\widehat{Z}}$ invariants.

pdf (2902 b)   tex (2 mb)  

References

  1. Andersen J.E., The asymptotic expansion conjecture, in Problems on Invariants of Knots and 3-Manifolds, Geom. Topol. Monogr., Vol. 4, Mathematical Sciences Publishers, 2004, 474-480.
  2. Andersen J.E., Kashaev R., A new formulation of the Teichmüller TQFT, arXiv:1305.4291.
  3. Andersen J.E., Kashaev R., A TQFT from quantum Teichmüller theory, Comm. Math. Phys. 330 (2014), 887-934, arXiv:1109.6295.
  4. Andersen J.E., Kashaev R., The Teichmüller TQFT, in Proceedings of the International Congress of Mathematicians-Rio de Janeiro 2018. Vol. III. Invited lectures, World Scientific Publishing, Hackensack, NJ, 2019, 2541-2565, arXiv:1811.06853.
  5. Andersen J.E., Mistegaard W.E., Resurgence analysis of quantum invariants of Seifert fibered homology spheres, J. Lond. Math. Soc. 105 (2022), 709-764, arXiv:1811.05376.
  6. Andersen J.E., Mistegaard W.E., The full asymptotic expansion of the WRT-invariant of all surgeries on the figure 8 knot, in preparation.
  7. Bar-Natan D., Garoufalidis S., On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996), 103-133.
  8. Batut C., Belabas K., Benardi D., Cohen H., Olivier M., User's guide to PARI-GP, available at ftp: megrez.math.u-bordeaux.fr/pub/pari.
  9. Beem C., Dimofte T., Pasquetti S., Holomorphic blocks in three dimensions, J. High Energy Phys. 2014 (2014), no. 12, 177, 119 pages, arXiv:1211.1986.
  10. Beliakova A., Blanchet C., Le T., Laplace transform and universal $\mathfrak{sl}_2$ invariants, arXiv:math.QA/0509394.
  11. Bettin S., Drappeau S., Modularity and value distribution of quantum invariants of hyperbolic knots, Math. Ann. 382 (2022), 1631-1679, arXiv:1905.02045.
  12. Caliceti E., Meyer-Hermann M., Ribeca P., Surzhykov A., Jentschura U.D., From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions, Phys. Rep. 446 (2007), 1-96, arXiv:0707.1596.
  13. Charles L., Marché J., Knot state asymptotics II: Witten conjecture and irreducible representations, Publ. Math. Inst. Hautes Études Sci. 121 (2015), 323-361, arXiv:1107.1646.
  14. Chen Q., Yang T., Volume conjectures for the Reshetikhin-Turaev and the Turaev-Viro invariants, Quantum Topol. 9 (2018), 419-460, arXiv:1503.02547.
  15. Cheng M.C.N., Chun S., Ferrari F., Gukov S., Harrison S.M., 3d modularity, J. High Energy Phys. 2019 (2019), no. 10, 010, 93 pages, arXiv:1809.10148.
  16. Cooper D., Culler M., Gillet H., Long D.D., Shalen P.B., Plane curves associated to character varieties of $3$-manifolds, Invent. Math. 118 (1994), 47-84.
  17. Costin O., Garoufalidis S., Resurgence of the Kontsevich-Zagier series, Ann. Inst. Fourier (Grenoble) 61 (2011), 1225-1258, arXiv:math.GT/0609619.
  18. Culler M., Dunfield N., Goerner M., Weeks J., SnapPy, a computer program for studying the geometry and topology of $3$-manifolds, Release 3.0.3, available at http://snappy.computop.org.
  19. Dimofte T., Quantum Riemann surfaces in Chern-Simons theory, Adv. Theor. Math. Phys. 17 (2013), 479-599, arXiv:1102.4847.
  20. Dimofte T., Gaiotto D., Gukov S., 3-manifolds and 3d indices, Adv. Theor. Math. Phys. 17 (2013), 975-1076, arXiv:1112.5179.
  21. Dimofte T., Garoufalidis S., The quantum content of the gluing equations, Geom. Topol. 17 (2013), 1253-1315, arXiv:1202.6268.
  22. Dimofte T., Garoufalidis S., Quantum modularity and complex Chern-Simons theory, Commun. Number Theory Phys. 12 (2018), 1-52, arXiv:1511.05628.
  23. Dimofte T., Gukov S., Lenells J., Zagier D., Exact results for perturbative Chern-Simons theory with complex gauge group, Commun. Number Theory Phys. 3 (2009), 363-443, arXiv:0903.2472.
  24. Folsom A., Males J., Rolen L., Storzer M., Oscillating asymptotics for a Nahm-type sum and conjectures of Andrews, arXiv:2305.16654.
  25. Gang D., Romo M., Yamazaki M., All-order volume conjecture for closed 3-manifolds from complex Chern-Simons theory, Comm. Math. Phys. 359 (2018), 915-936, arXiv:1704.00918.
  26. Gang D., Yonekura K., Symmetry enhancement and closing of knots in 3d/3d correspondence, J. High Energy Phys. 2018 (2018), no. 7, 145, 58 pages.
  27. Garoufalidis S., Chern-Simons theory, analytic continuation and arithmetic, Acta Math. Vietnam. 33 (2008), 335-362, arXiv:0711.1716.
  28. Garoufalidis S., The 3D index of an ideal triangulation and angle structures, Ramanujan J. 40 (2016), 573-604, arXiv:1208.1663.
  29. Garoufalidis S., State integrals, the quantum dilog, and knots, Lecture, 18 September, 2018, Max Planck Institute for Mathematics.
  30. Garoufalidis S., Gu J., Mariño M., The resurgent structure of quantum knot invariants, Comm. Math. Phys. 386 (2021), 469-493, arXiv:2007.10190.
  31. Garoufalidis S., Gu J., Mariño M., Peacock patterns and resurgence in complex Chern-Simons theory, Res. Math. Sci. 10 (2023), 29, 67 pages, arXiv:2012.00062.
  32. Garoufalidis S., Gu J., Mariño M., Wheeler C., Resurgence of Chern-Simons theory at the trivial flat connection, Comm. Math. Phys. 406 (2025), 20, 60 pages, arXiv:2111.04763.
  33. Garoufalidis S., Kashaev R., Evaluation of state integrals at rational points, Commun. Number Theory Phys. 9 (2015), 549-582, arXiv:1411.6062.
  34. Garoufalidis S., Kashaev R., From state integrals to $q$-series, Math. Res. Lett. 24 (2017), 781-801, arXiv:1304.2705.
  35. Garoufalidis S., Kashaev R., A meromorphic extension of the 3D index, Res. Math. Sci. 6 (2019), 8, 34 pages, arXiv:1706.08132.
  36. Garoufalidis S., Lê T.T.Q., Asymptotics of the colored Jones function of a knot, Geom. Topol. 15 (2011), 2135-2180, arXiv:math.GT/0508100.
  37. Garoufalidis S., Lê T.T.Q., From 3-dimensional skein theory to functions near $\mathbb{Q}$, arXiv:2307.09135.
  38. Garoufalidis S., Storzer M., Wheeler C., Perturbative invariants of cusped hyperbolic 3-manifolds, arXiv:2305.14884.
  39. Garoufalidis S., Wheeler C., Modular $q$-holonomic modules, arXiv:2203.17029.
  40. Garoufalidis S., Zagier D., Asymptotics of Nahm sums at roots of unity, Ramanujan J. 55 (2021), 219-238, arXiv:1812.07690.
  41. Garoufalidis S., Zagier D., Knots and their related $q$-series, SIGMA 19 (2023), 082, 39 pages, arXiv:2304.09377.
  42. Garoufalidis S., Zagier D., Knots, perturbative series and quantum modularity, SIGMA 20 (2024), 055, 87 pages, arXiv:2111.06645.
  43. Grassi A., Gu J., Mariño M., Non-perturbative approaches to the quantum Seiberg-Witten curve, J. High Energy Phys. 2020 (2020), no. 7, 106, 50 pages, arXiv:1908.07065.
  44. Grünberg D.B., Moree P., Sequences of enumerative geometry: congruences and asymptotics, Experiment. Math. 17 (2008), 409-426, arXiv:math.NT/0610286.
  45. Gukov S., Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial, Comm. Math. Phys. 255 (2005), 577-627, arXiv:hep-th/0306165.
  46. Gukov S., Manolescu C., A two-variable series for knot complements, Quantum Topol. 12 (2021), 1-109, arXiv:1904.06057.
  47. Gukov S., Mariño M., Putrov P., Resurgence in complex Chern-Simons theory, arXiv:1605.07615.
  48. Gukov S., Pei D., Putrov P., Vafa C., BPS spectra and 3-manifold invariants, J. Knot Theory Ramifications 29 (2020), 2040003, 85 pages, arXiv:1701.06567.
  49. Gukov S., Putrov P., Vafa C., Fivebranes and 3-manifold homology, J. High Energy Phys. 2017 (2017), no. 7, 071, 81 pages, arXiv:1602.05302.
  50. Hikami K., Hyperbolic structure arising from a knot invariant, Internat. J. Modern Phys. A 16 (2001), 3309-3333, arXiv:math-ph/0105039.
  51. Hikami K., Mock (false) theta functions as quantum invariants, Regul.Chaotic Dyn. 10 (2005), 509-530, arXiv:math-ph/0506073.
  52. Jones V.F.R., A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985), 103-111.
  53. Jones V.F.R., Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388.
  54. Kashaev R.M., The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997), 269-275, arXiv:q-alg/9601025.
  55. Khovanov M., A categorification of the Jones polynomial, Duke Math. J. 101 (2000), 359-426, arXiv:math.QA/9908171.
  56. Lawrence R., Zagier D., Modular forms and quantum invariants of $3$-manifolds, Asian J. Math. 3 (1999), 93-107.
  57. Mariño M., From resurgence to BPS states, Talk, Strings 2019, Brussels.
  58. Melvin P.M., Morton H.R., The coloured Jones function, Comm. Math. Phys. 169 (1995), 501-520.
  59. Murakami H., Murakami J., The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001), 85-104, arXiv:math.GT/9905075.
  60. Nahm W., Conformal field theory and torsion elements of the Bloch group, in Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 67-132, arXiv:hep-th/0404120.
  61. Neumann W.D., Extended Bloch group and the Cheeger-Chern-Simons class, Geom. Topol. 8 (2004), 413-474, arXiv:math.GT/0307092.
  62. Neumann W.D., Zagier D., Volumes of hyperbolic three-manifolds, Topology 24 (1985), 307-332.
  63. Ohtsuki T., On the asymptotic expansion of the quantum $\rm SU(2)$ invariant at $q=\exp(4\pi\sqrt{-1}/N)$ for closed hyperbolic 3-manifolds obtained by integral surgery along the figure-eight knot, Algebr. Geom. Topol. 18 (2018), 4187-4274.
  64. Olver F.W.J., Asymptotics and special functions, AKP Classics, AK Peters/CRC Press, Ltd., Wellesley, MA, 1997.
  65. Park S., Inverted state sums, inverted Habiro series, and indefinite theta functions, arXiv:2106.03942.
  66. Reshetikhin N.Yu., Turaev V.G., Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), 1-26.
  67. Reshetikhin N.Yu., Turaev V.G., Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
  68. Rozansky L., The universal $R$-matrix, Burau representation, and the Melvin-Morton expansion of the colored Jones polynomial, Adv. Math. 134 (1998), 1-31.
  69. Sloane N.J.A. et al., The on-line encyclopedia of integer sequences, 2024, https://oeis.org.
  70. Thurston W.P., The geometry and topology of three-manifolds, Princeton University, 1979.
  71. Thurston W.P., Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.
  72. Turaev V.G., Quantum invariants of knots and 3-manifolds, 3rd ed., De Gruyter Stud. Math., Vol. 18, De Gruyter, Berlin, 2016.
  73. Wheeler C., Modular $q$-difference equations and quantum invariants of hyperbolic three-manifolds, Ph.D. Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2023, available at https://hdl.handle.net/20.500.11811/10811.
  74. Wilf H.S., Zeilberger D., An algorithmic proof theory for hypergeometric (ordinary and ''$q$'') multisum/integral identities, Invent. Math. 108 (1992), 575-633.
  75. Witten E., Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399.
  76. Witten E., Analytic continuation of Chern-Simons theory, in Chern-Simons Gauge Theory: 20 Years After, AMS/IP Stud. Adv. Math., Vol. 50, American Mathematical Society, Providence, RI, 2011, 347-446, arXiv:1001.2933.
  77. Yoshida T., The $\eta$-invariant of hyperbolic $3$-manifolds, Invent. Math. 81 (1985), 473-514.
  78. Zagier D., Holomorphic quantum modular forms, Lecture, 28 Febuary 2020, Hausdorff Center for Mathematics, available at https://www.youtube.com/watch?v=2Rj_xh3UKrU.
  79. Zagier D., Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology 40 (2001), 945-960.
  80. Zagier D., The dilogarithm function, in Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 3-65.
  81. Zagier D., Quantum modular forms, in Quanta of Maths, Clay Math. Proc., Vol. 11, American Mathematical Society, Providence, RI, 2010, 659-675.
  82. Zeilberger D., A holonomic systems approach to special functions identities, J. Comput. Appl. Math. 32 (1990), 321-368.

Previous article  Next article  Contents of Volume 21 (2025)