|
SIGMA 21 (2025), 004, 74 pages arXiv:2308.03265
https://doi.org/10.3842/SIGMA.2025.004
Quantum Modularity for a Closed Hyperbolic 3-Manifold
Campbell Wheeler
Institut des Hautes Études Scientifiques, Le Bois-Marie, Bures-sur-Yvette, France
Received January 11, 2024, in final form December 23, 2024; Published online January 08, 2025
Abstract
This paper proves quantum modularity of both functions from $\mathbb{Q}$ and $q$-series associated to the closed manifold obtained by $-\smash{\frac{1}{2}}$ surgery on the figure-eight knot, $4_1(-1,2)$. In a sense, this is a companion to work of Garoufalidis-Zagier, where similar statements were studied in detail for some simple knots. It is shown that quantum modularity for closed manifolds provides a unification of Chen-Yang's volume conjecture with Witten's asymptotic expansion conjecture. Additionally we show that $4_1(-1,2)$ is a counterexample to previous conjectures of Gukov-Manolescu relating the Witten-Reshetikhin-Turaev invariant and the $\smash{\widehat{Z}(q)}$ series. This could be reformulated in terms of a ''strange identity'', which gives a volume conjecture for the $\smash{\widehat{Z}}$ invariant. Using factorisation of state integrals, we give conjectural but precise $q$-hypergeometric formulae for generating series of Stokes constants of this manifold. We find that the generating series of Stokes constants is related to the 3d index of $4_1(-1,2)$ proposed by Gang-Yonekura. This extends the equivalent conjecture of Garoufalidis-Gu-Mariño for knots to closed manifolds. This work appeared in a similar form in the author's Ph.D. Thesis.
Key words: 3d index; asymptotic expansions; Borel resummation; character varieties; Chern-Simons invariants; circle method; closed three-manifolds; cocycles; dilogarithm; duality; Faddeev quantum dilogarithm; factorisation; flat connections; hyperbolic manifolds; modularity; perturbative invariants; $q$-difference equations; $q$-hypergeometric functions; quadratic relations; quantum invariants; quantum modular forms; resurgence; surgery; state integrals; stationary phase; Stokes constants; Stokes phenomenon; strange identity; three-manifolds; volume conjecture; Witten-Reshetikhin-Turaev invariants; $\smash{\widehat{Z}}$ invariants.
pdf (2902 b)
tex (2 mb)
References
- Andersen J.E., The asymptotic expansion conjecture, in Problems on Invariants of Knots and 3-Manifolds, Geom. Topol. Monogr., Vol. 4, Mathematical Sciences Publishers, 2004, 474-480.
- Andersen J.E., Kashaev R., A new formulation of the Teichmüller TQFT, arXiv:1305.4291.
- Andersen J.E., Kashaev R., A TQFT from quantum Teichmüller theory, Comm. Math. Phys. 330 (2014), 887-934, arXiv:1109.6295.
- Andersen J.E., Kashaev R., The Teichmüller TQFT, in Proceedings of the International Congress of Mathematicians-Rio de Janeiro 2018. Vol. III. Invited lectures, World Scientific Publishing, Hackensack, NJ, 2019, 2541-2565, arXiv:1811.06853.
- Andersen J.E., Mistegaard W.E., Resurgence analysis of quantum invariants of Seifert fibered homology spheres, J. Lond. Math. Soc. 105 (2022), 709-764, arXiv:1811.05376.
- Andersen J.E., Mistegaard W.E., The full asymptotic expansion of the WRT-invariant of all surgeries on the figure 8 knot, in preparation.
- Bar-Natan D., Garoufalidis S., On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996), 103-133.
- Batut C., Belabas K., Benardi D., Cohen H., Olivier M., User's guide to PARI-GP, available at ftp: megrez.math.u-bordeaux.fr/pub/pari.
- Beem C., Dimofte T., Pasquetti S., Holomorphic blocks in three dimensions, J. High Energy Phys. 2014 (2014), no. 12, 177, 119 pages, arXiv:1211.1986.
- Beliakova A., Blanchet C., Le T., Laplace transform and universal $\mathfrak{sl}_2$ invariants, arXiv:math.QA/0509394.
- Bettin S., Drappeau S., Modularity and value distribution of quantum invariants of hyperbolic knots, Math. Ann. 382 (2022), 1631-1679, arXiv:1905.02045.
- Caliceti E., Meyer-Hermann M., Ribeca P., Surzhykov A., Jentschura U.D., From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions, Phys. Rep. 446 (2007), 1-96, arXiv:0707.1596.
- Charles L., Marché J., Knot state asymptotics II: Witten conjecture and irreducible representations, Publ. Math. Inst. Hautes Études Sci. 121 (2015), 323-361, arXiv:1107.1646.
- Chen Q., Yang T., Volume conjectures for the Reshetikhin-Turaev and the Turaev-Viro invariants, Quantum Topol. 9 (2018), 419-460, arXiv:1503.02547.
- Cheng M.C.N., Chun S., Ferrari F., Gukov S., Harrison S.M., 3d modularity, J. High Energy Phys. 2019 (2019), no. 10, 010, 93 pages, arXiv:1809.10148.
- Cooper D., Culler M., Gillet H., Long D.D., Shalen P.B., Plane curves associated to character varieties of $3$-manifolds, Invent. Math. 118 (1994), 47-84.
- Costin O., Garoufalidis S., Resurgence of the Kontsevich-Zagier series, Ann. Inst. Fourier (Grenoble) 61 (2011), 1225-1258, arXiv:math.GT/0609619.
- Culler M., Dunfield N., Goerner M., Weeks J., SnapPy, a computer program for studying the geometry and topology of $3$-manifolds, Release 3.0.3, available at http://snappy.computop.org.
- Dimofte T., Quantum Riemann surfaces in Chern-Simons theory, Adv. Theor. Math. Phys. 17 (2013), 479-599, arXiv:1102.4847.
- Dimofte T., Gaiotto D., Gukov S., 3-manifolds and 3d indices, Adv. Theor. Math. Phys. 17 (2013), 975-1076, arXiv:1112.5179.
- Dimofte T., Garoufalidis S., The quantum content of the gluing equations, Geom. Topol. 17 (2013), 1253-1315, arXiv:1202.6268.
- Dimofte T., Garoufalidis S., Quantum modularity and complex Chern-Simons theory, Commun. Number Theory Phys. 12 (2018), 1-52, arXiv:1511.05628.
- Dimofte T., Gukov S., Lenells J., Zagier D., Exact results for perturbative Chern-Simons theory with complex gauge group, Commun. Number Theory Phys. 3 (2009), 363-443, arXiv:0903.2472.
- Folsom A., Males J., Rolen L., Storzer M., Oscillating asymptotics for a Nahm-type sum and conjectures of Andrews, arXiv:2305.16654.
- Gang D., Romo M., Yamazaki M., All-order volume conjecture for closed 3-manifolds from complex Chern-Simons theory, Comm. Math. Phys. 359 (2018), 915-936, arXiv:1704.00918.
- Gang D., Yonekura K., Symmetry enhancement and closing of knots in 3d/3d correspondence, J. High Energy Phys. 2018 (2018), no. 7, 145, 58 pages.
- Garoufalidis S., Chern-Simons theory, analytic continuation and arithmetic, Acta Math. Vietnam. 33 (2008), 335-362, arXiv:0711.1716.
- Garoufalidis S., The 3D index of an ideal triangulation and angle structures, Ramanujan J. 40 (2016), 573-604, arXiv:1208.1663.
- Garoufalidis S., State integrals, the quantum dilog, and knots, Lecture, 18 September, 2018, Max Planck Institute for Mathematics.
- Garoufalidis S., Gu J., Mariño M., The resurgent structure of quantum knot invariants, Comm. Math. Phys. 386 (2021), 469-493, arXiv:2007.10190.
- Garoufalidis S., Gu J., Mariño M., Peacock patterns and resurgence in complex Chern-Simons theory, Res. Math. Sci. 10 (2023), 29, 67 pages, arXiv:2012.00062.
- Garoufalidis S., Gu J., Mariño M., Wheeler C., Resurgence of Chern-Simons theory at the trivial flat connection, Comm. Math. Phys. 406 (2025), 20, 60 pages, arXiv:2111.04763.
- Garoufalidis S., Kashaev R., Evaluation of state integrals at rational points, Commun. Number Theory Phys. 9 (2015), 549-582, arXiv:1411.6062.
- Garoufalidis S., Kashaev R., From state integrals to $q$-series, Math. Res. Lett. 24 (2017), 781-801, arXiv:1304.2705.
- Garoufalidis S., Kashaev R., A meromorphic extension of the 3D index, Res. Math. Sci. 6 (2019), 8, 34 pages, arXiv:1706.08132.
- Garoufalidis S., Lê T.T.Q., Asymptotics of the colored Jones function of a knot, Geom. Topol. 15 (2011), 2135-2180, arXiv:math.GT/0508100.
- Garoufalidis S., Lê T.T.Q., From 3-dimensional skein theory to functions near $\mathbb{Q}$, arXiv:2307.09135.
- Garoufalidis S., Storzer M., Wheeler C., Perturbative invariants of cusped hyperbolic 3-manifolds, arXiv:2305.14884.
- Garoufalidis S., Wheeler C., Modular $q$-holonomic modules, arXiv:2203.17029.
- Garoufalidis S., Zagier D., Asymptotics of Nahm sums at roots of unity, Ramanujan J. 55 (2021), 219-238, arXiv:1812.07690.
- Garoufalidis S., Zagier D., Knots and their related $q$-series, SIGMA 19 (2023), 082, 39 pages, arXiv:2304.09377.
- Garoufalidis S., Zagier D., Knots, perturbative series and quantum modularity, SIGMA 20 (2024), 055, 87 pages, arXiv:2111.06645.
- Grassi A., Gu J., Mariño M., Non-perturbative approaches to the quantum Seiberg-Witten curve, J. High Energy Phys. 2020 (2020), no. 7, 106, 50 pages, arXiv:1908.07065.
- Grünberg D.B., Moree P., Sequences of enumerative geometry: congruences and asymptotics, Experiment. Math. 17 (2008), 409-426, arXiv:math.NT/0610286.
- Gukov S., Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial, Comm. Math. Phys. 255 (2005), 577-627, arXiv:hep-th/0306165.
- Gukov S., Manolescu C., A two-variable series for knot complements, Quantum Topol. 12 (2021), 1-109, arXiv:1904.06057.
- Gukov S., Mariño M., Putrov P., Resurgence in complex Chern-Simons theory, arXiv:1605.07615.
- Gukov S., Pei D., Putrov P., Vafa C., BPS spectra and 3-manifold invariants, J. Knot Theory Ramifications 29 (2020), 2040003, 85 pages, arXiv:1701.06567.
- Gukov S., Putrov P., Vafa C., Fivebranes and 3-manifold homology, J. High Energy Phys. 2017 (2017), no. 7, 071, 81 pages, arXiv:1602.05302.
- Hikami K., Hyperbolic structure arising from a knot invariant, Internat. J. Modern Phys. A 16 (2001), 3309-3333, arXiv:math-ph/0105039.
- Hikami K., Mock (false) theta functions as quantum invariants, Regul.Chaotic Dyn. 10 (2005), 509-530, arXiv:math-ph/0506073.
- Jones V.F.R., A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985), 103-111.
- Jones V.F.R., Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388.
- Kashaev R.M., The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997), 269-275, arXiv:q-alg/9601025.
- Khovanov M., A categorification of the Jones polynomial, Duke Math. J. 101 (2000), 359-426, arXiv:math.QA/9908171.
- Lawrence R., Zagier D., Modular forms and quantum invariants of $3$-manifolds, Asian J. Math. 3 (1999), 93-107.
- Mariño M., From resurgence to BPS states, Talk, Strings 2019, Brussels.
- Melvin P.M., Morton H.R., The coloured Jones function, Comm. Math. Phys. 169 (1995), 501-520.
- Murakami H., Murakami J., The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001), 85-104, arXiv:math.GT/9905075.
- Nahm W., Conformal field theory and torsion elements of the Bloch group, in Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 67-132, arXiv:hep-th/0404120.
- Neumann W.D., Extended Bloch group and the Cheeger-Chern-Simons class, Geom. Topol. 8 (2004), 413-474, arXiv:math.GT/0307092.
- Neumann W.D., Zagier D., Volumes of hyperbolic three-manifolds, Topology 24 (1985), 307-332.
- Ohtsuki T., On the asymptotic expansion of the quantum $\rm SU(2)$ invariant at $q=\exp(4\pi\sqrt{-1}/N)$ for closed hyperbolic 3-manifolds obtained by integral surgery along the figure-eight knot, Algebr. Geom. Topol. 18 (2018), 4187-4274.
- Olver F.W.J., Asymptotics and special functions, AKP Classics, AK Peters/CRC Press, Ltd., Wellesley, MA, 1997.
- Park S., Inverted state sums, inverted Habiro series, and indefinite theta functions, arXiv:2106.03942.
- Reshetikhin N.Yu., Turaev V.G., Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), 1-26.
- Reshetikhin N.Yu., Turaev V.G., Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
- Rozansky L., The universal $R$-matrix, Burau representation, and the Melvin-Morton expansion of the colored Jones polynomial, Adv. Math. 134 (1998), 1-31.
- Sloane N.J.A. et al., The on-line encyclopedia of integer sequences, 2024, https://oeis.org.
- Thurston W.P., The geometry and topology of three-manifolds, Princeton University, 1979.
- Thurston W.P., Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.
- Turaev V.G., Quantum invariants of knots and 3-manifolds, 3rd ed., De Gruyter Stud. Math., Vol. 18, De Gruyter, Berlin, 2016.
- Wheeler C., Modular $q$-difference equations and quantum invariants of hyperbolic three-manifolds, Ph.D. Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2023, available at https://hdl.handle.net/20.500.11811/10811.
- Wilf H.S., Zeilberger D., An algorithmic proof theory for hypergeometric (ordinary and ''$q$'') multisum/integral identities, Invent. Math. 108 (1992), 575-633.
- Witten E., Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399.
- Witten E., Analytic continuation of Chern-Simons theory, in Chern-Simons Gauge Theory: 20 Years After, AMS/IP Stud. Adv. Math., Vol. 50, American Mathematical Society, Providence, RI, 2011, 347-446, arXiv:1001.2933.
- Yoshida T., The $\eta$-invariant of hyperbolic $3$-manifolds, Invent. Math. 81 (1985), 473-514.
- Zagier D., Holomorphic quantum modular forms, Lecture, 28 Febuary 2020, Hausdorff Center for Mathematics, available at https://www.youtube.com/watch?v=2Rj_xh3UKrU.
- Zagier D., Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology 40 (2001), 945-960.
- Zagier D., The dilogarithm function, in Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 3-65.
- Zagier D., Quantum modular forms, in Quanta of Maths, Clay Math. Proc., Vol. 11, American Mathematical Society, Providence, RI, 2010, 659-675.
- Zeilberger D., A holonomic systems approach to special functions identities, J. Comput. Appl. Math. 32 (1990), 321-368.
|
|