|
SIGMA 21 (2025), 014, 37 pages arXiv:2308.16815
https://doi.org/10.3842/SIGMA.2025.014
Strichartz Estimates for the $(k,a)$-Generalized Laguerre Operators
Kouichi Taira a and Hiroyoshi Tamori b
a) Faculty of Mathematics, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, Japan
b) Department of Mathematical Sciences, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, 337-8570, Japan
Received June 24, 2024, in final form February 12, 2025; Published online March 02, 2025
Abstract
In this paper, we prove Strichartz estimates for the $(k,a)$-generalized Laguerre operators $a^{-1}\bigl(-|x|^{2-a}\Delta_k+|x|^a\bigr)$ which were introduced by Ben Saïd-Kobayashi-Ørsted, and for the operators $|x|^{2-a}\Delta_k$. Here $k$ denotes a non-negative multiplicity function for the Dunkl Laplacian $\Delta_k$ and $a$ denotes a positive real number satisfying certain conditions. The cases $a=1,2$ were studied previously. We consider more general cases here. The proof depends on symbol-type estimates of special functions and a discrete analog of the stationary phase theorem inspired by the work of Ionescu-Jerison.
Key words: Strichartz estimates; oscillatory integrals; representation theory; Schrödinger equations.
pdf (663 kb)
tex (44 kb)
References
- Ben Saïd S., Strichartz estimates for Schrödinger-Laguerre operators, Semigroup Forum 90 (2015), 251-269.
- Ben Saïd S., Kobayashi T., Ørsted B., Laguerre semigroup and Dunkl operators, Compos. Math. 148 (2012), 1265-1336, arXiv:0907.3749.
- Boggarapu P., Mejjaoli H., Mondal S.S., Senapati P.J.K., Time-frequency analysis of $(k, a)$-generalized wavelet transform and applications, J. Math. Phys. 64 (2023), 073504, 36 pages.
- Bouclet J.-M., Tzvetkov N., Strichartz estimates for long range perturbations, Amer. J. Math. 129 (2007), 1565-1609, arXiv:math.AP/0509489.
- Christ M., Kiselev A., Maximal functions associated to filtrations, J. Funct. Anal. 179 (2001), 409-425.
- Christianson H., Near sharp Strichartz estimates with loss in the presence of degenerate hyperbolic trapping, Comm. Math. Phys. 324 (2013), 657-693, arXiv:1201.2464.
- Donninger R., Schlag W., Soffer A., On pointwise decay of linear waves on a Schwarzschild black hole background, Comm. Math. Phys. 309 (2012), 51-86, arXiv:0911.3179.
- Fanelli L., Felli V., Fontelos M.A., Primo A., Time decay of scaling critical electromagnetic Schrödinger flows, Comm. Math. Phys. 324 (2013), 1033-1067, arXiv:1203.1771.
- Fanelli L., Felli V., Fontelos M.A., Primo A., Time decay of scaling invariant electromagnetic Schrödinger equations on the plane, Comm. Math. Phys. 337 (2015), 1515-1533, arXiv:1405.1784.
- Fanelli L., Zhang J., Zheng J., Dispersive estimates for 2D-wave equations with critical potentials, Adv. Math. 400 (2022), 108333, 46 pages, arXiv:2003.10356.
- Folland G.B., Harmonic analysis in phase space, Ann. of Math. Stud., Vol. 122, Princeton University Press, Princeton, NJ, 1989.
- Ford G.A., The fundamental solution and Strichartz estimates for the Schrödinger equation on flat euclidean cones, Comm. Math. Phys. 299 (2010), 447-467, arXiv:0910.1795.
- Gao X., Yin Z., Zhang J., Zheng J., Decay and Strichartz estimates in critical electromagnetic fields, J. Funct. Anal. 282 (2022), 109350, 51 pages, arXiv:2003.03086.
- Ginibre J., Velo G., The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 309-327.
- Hassell A., Zhang J., Global-in-time Strichartz estimates on nontrapping, asymptotically conic manifolds, Anal. PDE 9 (2016), 151-192, arXiv:1310.0909.
- Howe R., The oscillator semigroup, in The Mathematical Heritage of Hermann Weyl, Proc. Sympos. Pure Math., Vol. 48, American Mathematical Society, Providence, RI, 1988, 61-132.
- Ionescu A.D., Jerison D., On the absence of positive eigenvalues of Schrödinger operators with rough potentials, Geom. Funct. Anal. 13 (2003), 1029-1081.
- Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980.
- Kobayashi T., Mano G., Integral formulas for the minimal representation of ${\rm O}(p,2)$, Acta Appl. Math. 86 (2005), 103-113.
- Kobayashi T., Mano G., The inversion formula and holomorphic extension of the minimal representation of the conformal group, in Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., Vol. 12, World Scientific Publishing, Hackensack, NJ, 2007, 151-208, arXiv:math.RT/0607007.
- Kobayashi T., Mano G., The Schrödinger model for the minimal representation of the indefinite orthogonal group ${\rm O}(p,q)$, Mem. Amer. Math. Soc. 213 (2011), vi+132 pages, arXiv:0712.1769.
- Kumar V., Ruzhansky M., $L^p$-$L^q$-boundedness of $(k,a)$-Fourier multipliers with applications to nonlinear equations, Int. Math. Res. Not. 2023 (2023), 1073-1093.
- Li S., Leng J., Fei M., Real Paley-Wiener theorems for the $(k,a)$-generalized Fourier transform, Math. Methods Appl. Sci. 43 (2020), 6985-6994.
- Mejjaoli H., Dunkl-Schrödinger semigroups and applications, Appl. Anal. 92 (2013), 1597-1626.
- Mondal S.S., Song M., Orthonormal Strichartz inequalities for the $(k,a)$-generalized Laguerre operator and Dunkl operator, arXiv:2208.12015.
- Sher D.A., Joint asymptotic expansions for Bessel functions, Pure Appl. Anal. 5 (2023), 461-505, arXiv:2203.06329, hrefhttps://doi.org/10.2140/paa.2023.5.461.
- Sogge C.D., Fourier integrals in classical analysis, Cambridge Tracts in Math., Vol. 105, Cambridge University Press, Cambridge, 1993.
- Stein E.M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., Vol. 43, Princeton University Press, Princeton, NJ, 1993.
- Strichartz R.S., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-714.
- Taira K., Tamori H., Integral representation for the $(k,a)$-generalized Laguerre semigroups, in preparation.
- Tao T., Nonlinear dispersive equations: local and global analysis, CBMS Reg. Conf. Ser. Math., Vol. 106, American Mathematical Society, Providence, RI, 2006.
- Teng W., Hardy inequalities for fractional $(k,a)$-generalized harmonic oscillators, J. Lie Theory 32 (2022), 1007-1023, arXiv:2008.00804.
- Watson G.N., A treatise on the theory of Bessel functions, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1995.
- Yajima K., Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 (1987), 415-426.
- Zhang J., Zheng J., Strichartz estimates and wave equation in a conic singular space, Math. Ann. 376 (2020), 525-581, arXiv:1804.02390.
|
|