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Abstract. This paper provides a complete classification of torus-invariant curves in Cherkis
bow varieties of type A. We develop combinatorial codes for compact and noncompact
invariant curves involving the butterfly diagrams, Young diagrams, and binary contingency
tables. As a key intermediate step, we also develop a novel tangent weight formula. Finally,
we apply this new machinery to example bow varieties to demonstrate how to obtain their 1-
skeletons (union of fixed points and invariant curves).
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1 Introduction

For a broad class of complex algebraic varieties with a torus action T

⟳

Y , the fixed points and
invariant curves under the torus action play an important role in the study of the equivariant
cohomology of Y . Here, we define an invariant curve to be the closure of a 1-dimensional T -orbit.
This paper extends the work of [17] on the case where Y is a Cherkis bow variety of type A by
providing combinatorial codes for invariant curves.

For simplicity, assume that Y has finitely many fixed points. Under certain conditions, the
map ι∗ : H∗

T (Y ) → H∗
T

(
Y T
)
induced by the inclusion of the fixed point locus is injective. In other

words, each equivariant cohomology class is uniquely determined by its fixed point restrictions.
This is the case for partial flag varieties, and more generally, Nakajima quiver varieties of type A.
As H∗

T (pt) = C[u1, . . . , um], where m = dim(T ), this allows us to describe equivariant cohomol-
ogy classes as tuples of polynomials. This approach is taken in [16] to study ℏ-deformed Schubert
classes. In the setting where the variety is equivariantly formal with respect to the T -action,
we can describe the image of ι∗ in terms of the fixed points and invariant curves. For instance,
when Y possesses finitely many invariant curves, the result of [9] describes the image of ι∗ in
terms of simple matching conditions on the polynomials (see also [25]). These matching condi-
tions are determined by the invariant curves and their tangent data. When there are infinitely
many invariant curves, the Chang–Skjelbred lemma [4] provides a more complicated description
(see also [2]). Unfortunately, not every Cherkis bow variety is equivariantly formal nor has injec-
tive restriction map [10]. The appendix of [3] shows, however, that there is a natural subalgebra
(generated by the stable envelope) of H∗

T (Y ) on which ι∗ is injective. Determining whether this
subalgebra can be described in terms of fixed points and invariant curves is an open problem.

Besides providing a concrete way to describe equivariant cohomology classes, the fixed points
and invariant curves play an important role in the study of stable envelopes [1, 11]. The stable
envelope is an axiomatically defined T -equivariant characteristic class with important connec-
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tions to quantum integrable systems, quantum groups, and quantum cohomology. In certain
settings, the axioms can be formulated as conditions on fixed point restrictions that are entirely
determined by the invariant curves and their tangent data. This formulation is, in a sense,
local to the fixed points, in contrast to the original global axioms of [1, 11]. See [20, 21, 22] for
a discussion of local stable envelope axioms in the Schubert calculus setting and [17, Section 7]
for the Cherkis bow variety setting. In the Schubert calculus setting, the stable envelope agrees
with the Chern–Schwartz–MacPherson classes of Schubert cells [8]. While we are focusing on
equivariant cohomology here, this discussion generalizes to K-theory and elliptic cohomology.
In the elliptic cohomology setting, the stable envelope plays an important role in the study
of 3d (N = 4) mirror symmetry [3, 18, 19, 24].

The work of [3] shows that Cherkis bow varieties [5, 6, 7, 15] form a natural pool of varieties
where the phenomenon of mirror symmetry manifests itself in the combinatorics and elliptic
stable envelope. Bow varieties are holomorphic symplectic manifolds that come equipped with
a torus action and generalize Nakajima quiver varieties [13]. In [17], a combinatorial framework
for studying the fixed points of bow varieties of type A is established. This paper completes the
picture by providing a complete combinatorial description of the invariant curves. A construction
for compact invariant curves involving so called “butterfly surgeries” was previously known to
the second author (see [23]). However, whether that construction captured all compact invariant
curves remained a conjecture. This work resolves that conjecture in the affirmative and extends
the result by also capturing the noncompact invariant curves using modified “butterfly surgery”
constructions.

While the main accomplishment of this paper is the complete classification of invariant curves,
several intermediate developments are required, some of which are interesting in their own right.
In Section 2, we review the combinatorial framework of [17] for the study of type A Cherkis
bow varieties. In Section 3, we prove a novel and noncancellative formula for the tangent
weights at a fixed point of a bow variety. This formula can be used to efficiently calculate
tangent weights by hand or by computer and plays a pivotal role in the proof of our main
result. In Section 4, we review the essentials of torus invariant curves and give a self-contained
presentation of the butterfly surgery construction of [23]. This section also describes two novel
constructions for noncompact invariant curves. Finally, we reformulate these constructions in
terms of surgery operations on Young diagrams, resulting in a description of invariant curves in
terms of familiar combinatorics. Section 5 further reformulates the combinatorics of Section 4
in terms of binary contingency tables (BCTs). The results of this section provide a simple
algorithm for constructing all invariant curves in a bow variety. Section 6 contains the main
result, a classification of invariant curves containing a given fixed point. Curves are characterized
as one of three types, each having its own unique properties. In the final section, Section 7,
we apply the machinery developed in the previous sections to the example bow varieties of [17].

2 Background

We begin by recalling the essential pieces of the combinatorial framework of [17] for the study of
bow varieties. We will require brane diagrams, tie diagrams, table-with-margins, butterfly dia-
grams, the formula for the tangent bundle of a bow variety, formulas for fixed point restrictions,
and the Hanany–Witten transition.

2.1 Brane diagrams and bow varieties

The [17] framework is based on the [15] construction of bow varieties. Here, we provide a sim-
plified presentation. A brane diagram D consists of a horizontal line divided into segments by n
lines of slope 1 and m lines of slope −1. The lines must be arranged so as not to create a triple
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D5 branesD3 branes

. . .

Figure 1. The first example of a brane diagram given in [17].

(or greater) intersection. Additionally, each segment is decorated by a nonnegative integer mul-
tiplicity where the infinite segments on the far left and right are automatically decorated with 0.
An example of a brane diagram is shown in Figure 1. The lines of slope 1 are called “NS5
branes”, and we label them from left to right as V1, . . . , Vn. The lines of slope −1 are called
“D5 branes”, and we label them from left to right as U1, . . . , Um. The NS5 and D5 branes are
referred to collectively as “5-branes”. The segments along with their multiplicities are referred
to as “D3 branes”. The segments are labeled as X0, . . . , Xn+m and the multiplicity of a D3
brane X is denoted by dX . In particular, dX0 = dXn+m = 0.

We do not bother displaying X0 and Xn+m in graphical representations of D. We also color
the NS5 branes red and the D5 branes blue. These colors are purely for visual clarity and have
no mathematical meaning.

To each brane diagram D, we associate a smooth, torus equivariant, symplectic holomorphic
variety T ⟳ C(D). This variety will be constructed as a GIT quotient. Given any brane β (D5,
NS5, or D3), denote the brane immediately to the left by β− and right by β+.

First, a vector space will be associated to each 5-brane. For each D3 brane X, letWX = CdX ,
and for each D5 brane U , let CU = C.

� To each D5 brane U , associate a “triangle part”

MU = Hom(WU+ ,WU−)⊕Hom(WU+ ,CU )⊕Hom(CU ,WU−)

⊕ End(WU−)⊕ End(WU+),

whose elements will be denoted by (AU , bU , aU , BU , B
′
U ), as shown in the diagram

WU− WU+

CU .

BU ◦

◦
bU

AU

B′
U

◦

aU

� To each NS5 brane V , associate the “two-way part”

MV = Hom(WV + ,WV −)⊕Hom(WV − ,WV +),

whose elements will be denoted by (CV , DV ), as shown in the diagram

WV − WV + .
DV

CV
◦
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Finally, define

M =
⊕
U D5

MU ⊕
⊕

V NS5

MV ,

the sum of all triangle and two-way parts.
Next, define the groups

T = C×
ℏ ×

∏
U D5

C×
U and G =

∏
X D3

GL(WX),

where C×
ℏ and C×

U are copies of C×. The group G acts on each WX and hence on M in a natural
way. The torus T acts on M by scaling CU by the C×

U factor and scaling each circled map in the
above diagrams by the C×

ℏ factor.
Let M0 be the subset of M satisfying the following conditions:

(1) For each D5 brane U , we have BUAU −AUB
′
U + aUbU = 0.

(2) For each D3 brane X, we have

� B′
X− −BX+ = 0 if X is in between two D5 branes (\−X − \),

� CX+DX+ −DX−CX− = 0 if X is in between two NS5 branes (/−X − /),

� −DX−CX− −BX+ = 0 if X− is an NS5 brane and X+ is a D5 brane (/−X − \),
� CX+DX+ +B′

X− = 0 if X− is a D5 brane and X+ is an NS5 brane (\−X − /).

These conditions arise from setting a certain moment map equal to 0 (see [15] or [17] for details).
Hence, we will refer to them as “0-momentum” conditions. Let W =

⊕
X D3WX , and define

three additional “stability” conditions:

(1) For all D5 branes U , the only BU+-invariant subspace S ⊂WU+ with AU (S) = 0, bU (S) =
0 is S = 0.

(2) For all D5 branes U , the only BU−-invariant subspace S ⊂WU− with im(AU )+im(aU ) ⊂ S
is S =WU− .

(3) The only subspace S =
⊕

X SX ⊂ W invariant under all A, B, C, —D maps such that
im(aU ) ⊂ S and AU induces an isomorphism WU+/SU+ →WU−/SU− for all D5 branes U
is S = W.

Stability conditions 1 and 2 are the S1 and S2 conditions of [15, Section 2.2], and stability
condition 3 is the ν2 condition of [15, Section 2.4]. Let M̃s be the subset of M0 satisfying the
three stability conditions. M̃s is G- and T-invariant.

Define the “Cherkis bow variety” corresponding to brane diagram D as the quotient C(D) =
M̃s/G. There is a residual action of T on C(D), along with a collection of T-equivariant “tau-
tological” vector bundles ξX → C(D), associated with the WX vector spaces. The rank of ξX
is dX . A formula for the T-equivariant K-theory class of the tangent bundle T C(D) is given in
[17, Section 3.2]:

� Let h be the trivial line bundle whose fibres are scaled by the C×
ℏ factor of T.

� For a D5 brane U define

TU = Hom(ξU+ , ξU−)⊕ hHom(ξU+ ,CU )⊕Hom(CU , ξU−)

⊕ hEnd(ξU−)⊕ hEnd(ξU+).

� For an NS5 brane V define TV = hHom(ξV + , ξV −)⊕Hom(ξV − , ξV +).
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Figure 2. An example of a tie diagram whose underlying brane diagram is the one displayed in Figure 1.

Then, as elements of K0
T(C(D)), we have

T C(D) =

(⊕
U D5

TU

)
⊕
( ⊕

V NS5

TV

)
⊖
(⊕

U D5

hHom(ξU+ , ξU−)

)
⊖
(⊕

X D3

(1 + h) End(ξX)

)
. (2.1)

2.2 Torus fixed points

Paper [17] provides three combinatorial codes for the T-fixed points of a bow variety C(D): tie
diagrams, butterfly diagrams, and table-with-margins (BCTs). We will be utilizing all three in
what follows.

Let us begin with tie diagrams. A “tie diagram” is obtained from a brane diagram by adding
dashed lines, called “ties”, between the 5-branes such that

� each tie joins 5-branes of different type (one NS5 and one D5 brane),

� for each segment X, there are dX distinct ties covering X.

We allow at most one tie between any two 5-branes. In Figure 2, we added ties to the brane
diagram in Figure 1 to create a tie diagram. This tie diagram corresponds to one of the T-fixed
points. Next, we will create a correspondence between tie diagrams and binary contingency
tables (BCTs). An intermediate notion will be required. An integer called the “charge” will be
associated to each 5-brane. For an NS5 brane V , let

charge(V ) = (dV + − dV −) + #{D5 branes left of V }.

For a D5 brane U , let

charge(U) = (dU− − dU+) + #{NS5 branes right of U}.

Define the “row margin” and “column margin”, respectively, by

r = (charge(V1), . . . , charge(Vn)), c = (charge(U1), . . . , charge(Um)).

A “binary contingency table” (BCT) with row and column margins r, c is a binary matrix with
row sums equal to r and columns sums equal to c. Note that the existence of such a matrix
implies that

∑
i ri =

∑
j cj . Given a tie diagram, construct a BCT M with margins r, c as

follows:

� if Vi is to the left of Uj , set Mij = 1 if there is a tie between Vi and Uj and Mij = 0
otherwise,

� if Vi is to the right of Uj , set Mij = 1 if there is no tie between Vi and Uj and Mij = 0
otherwise.
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5 2 2 0 2

U1 U2 U3 U4 U5
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1

1
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V6

V5

V4

V3

V2

V1

1 0 0 0 1

1 1 0 0 1

1 0 1 0 0

0 0 1 0 0

1 0 0 0 0

1 1 0 0 0

Figure 3. The table-with-margins corresponding to the tie diagram in Figure 2.

Assuming the underlying brane diagram D is fixed, this gives a bijection between tie diagrams
and BCTs with margins r, c. However, the map sending all tie diagrams (with arbitrary un-
derlying brane diagram) to their corresponding BCT is not injective. An additional piece of
data, called the “separating line”, is required to make this map bijective. A separating line is a
path running from the top left to the bottom right of an (m+ 1)× (n+ 1) lattice making only
downward and rightward moves. We draw the separating line over the BCT, as depicted in Fig-
ure 3. The separating line plays the role of encoding the order of the 5-branes. Downward moves
correspond to NS5 branes and rightward moves to D5 branes. A BCT along with a separating
line is called a “table-with-margins”. Table-with-margins are in bijection with tie diagrams.

Remark 2.1. Paper [15] provides a more general construction of bow varieties of affine type A.
In this more general setting, BCTs are replaced by the “Maya diagrams” of [14]. The precise
relationship between BCTs and Maya diagrams is discussed in an appendix of [17].

Finally, we will describe butterfly diagrams. These provide a depiction of a representative in
the prequotient M̃s of a T-fixed point of C(D). Fix a tie diagram and a D5 brane U . For each
segment X, let dUX be the number of distinct ties connected to U covering X. Place a column
of dUX vertices below X with fixed spacing, and align them in the following way:

� If the 5-brane between two consecutive columns is D5, align the columns at the bottom.

� For columns to the right of U , if the 5-brane between two consecutive columns is NS5,
align the columns at the top.

� For columns to the left of U , if the 5-brane between two consecutive columns is NS5, align
the columns so that the top vertex of the left column is one position lower than that of
the right.

Also, place a special “framing” vertex (indicated by an open circle in our diagrams) below U .
We will then join these vertices with directed edges:

� If a column is adjacent to a D5 brane, create downward (black) edges between each con-
secutive pair of vertices in the column.

� If the 5-brane between two adjacent columns is D5, create leftward (blue) edges between
horizontally adjacent pairs of vertices.

� If the 5-brane between two adjacent columns is NS5, create (magenta dotted) edges point-
ing left one position and down one position, wherever possible, and rightward (red) edges
between horizontally adjacent pairs of vertices.

� If dUU− > 0, create an (green) edge from the framing vertex to the top vertex under U−.

� If dUU+ > dUU− , create an (green) edge from vertex dUU+ −dUU− (counted from top to bottom)
to the framing vertex.
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Figure 4. The tie diagram from Figure 2 along with its corresponding butterfly diagram.

The resulting directed graph is called a “butterfly”. Taking the disjoint union of the butterflies
of all the D5 branes gives us a “butterfly diagram”. Figure 4 displays the butterfly diagram
corresponding to the tie diagram in Figure 2.

For each segment X, pick a basis for WX and identify the basis vectors with the vertices of
the butterfly diagram below X. For each D5 brane U , identify CU with the framing vertex of
the butterfly of U . Then, interpret the edges as A, −B, C, D, a, −b maps. Note that when X−

and X+ are both D5 branes, there are two B maps acting on WX , one from the triangle part
of X− and one from the triangle part of X+. Considering the 0-momentum condition, we take
these maps to be equal, both represented by the black edges below X. The maps determined
by the butterfly diagram constitute an element p̃ ∈ M̃s. Moreover, this element descends to
a T-fixed point of C(D). The converse is also true, that is, every T-fixed point of C(D) can be
represented by an element of M̃s determined by some butterfly diagram. This is the content
of [17, Theorem 4.8].

2.3 Fixed point restrictions

Recall that a bow variety C(D) comes equipped with tautological bundles ξX , one for each
segment. Let p ∈ C(D)T, and consider the corresponding butterfly diagram. Each non-framing
vertex will be assigned a “height” relative to the butterfly it belongs to.

Definition 2.2. Fix a butterfly and define the “height” of each of its vertices as follows:

� If the tail of a green edge is the framing vertex, the head is a vertex of height 0.

� If the head of a green edge is the framing vertex, the tail is a vertex of height 1.

� The height decreases by 1 when we go from one vertex to another one immediately below
it, and is constant across horizontal rows of vertices.

Given any vertex v in a butterfly diagram, denote its height by y(v). Note that the height of v
is measured with respect to the butterfly containing v.

Let u be the trivial line bundle over p whose T-action is given by scaling by the CU factor.
Similarly, let h be the trivial line bundle scaled by Cℏ. Decorate each vertex v of the U butterfly
by uhy(v) ∈ K0

T(p). Figure 5 shows these decorations for the butterfly diagram of Figure 4.
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u1 u1 u1 u1

u2h
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2 u2h
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2 u2h
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h

u2
h

u3
h

u3
h

u3
h

u3

u2
h2

u2
h2

u4
h

u4
h

u4
h

u4
h

u4 u4

Figure 5. The butterfly diagram of Figure 4 decorated by elements of K0
T(p).

Then, we have that ξX |p is equal the sum of the line bundles decorating the vertices of the
butterfly diagram below X as elements of K0

T(p). For example, in Figure 5, we have

ξX7 = u2h
2 + u3 +

u3

h
+

u4

h
.

Of central importance in this work is the T-equivariant K-theory class of Tp C(D). To express
this class in terms of u and h bundles, one simply takes the tangent bundle formula (2.1) and
substitutes each tautological bundle with the formula for its fixed point restriction calculated
as above. Then, one can apply bilinearity of Hom and the isomorphism Hom(α, β) ∼= β ⊗ α∗ to
expand this expression into a sum of line bundles. In our running example, after a great deal of
cancellations, we obtain

Tp C(D) =
u2h

4

u5
+

u2h
4

u3
+

u1h
3

u3
+

u2h
3

u3
+

u4h
2

u5
+

u3h

u5
+

u4h

u5
+

u5h

u3

+
u3

u5
+

u5

u4
+

u5

u4h
+

u3

u2h2
+

u3

u1h2
+

u3

u2h3
+

u5

u2h3
. (2.2)

Each line bundle in this expansion is called a “tangent weight at p”. In other words, the tangent
weights at p are the K-theoretic Chern roots of Tp C(D).

2.4 Hanany–Witten transition and separated bow varieties

Let D contain a D5 brane U followed immediately by an NS5 brane V . Let D̃ agree with D
except at U and V , where they differ as in the picture

d1 d2 d3

U V
X

d1 d̃2 d3

ŨṼ
X̃

,

where d2 + d̃2 = d1 + d3 + 1. Then, there is a natural holomorphic symplectic isomorphism
C(D)

∼=→ C(D̃) called a “Hanany–Witten transition”. In other words, Hanany–Witten transitions
allow one to exchange two consecutive 5-branes of different type (cf. [17, Section 8]) at the
expense of changing the multiplicity of the D3 brane in between. The Hanany–Witten transition
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on fixpoints
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A D
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Figure 6. The action of Hanany–Witten transition on tie diagrams. The E and ¬E symbols mean that
the tie labeled E is present if and only if the tie labeled ¬E is not.

2 3 4 6 9 11 6 4 2 2

Figure 7. The tie diagram of Figure 2 put into separated form using Hanany–Witten transitions.

is equivariant with respect to the reparametrization ũ = uh (the other factors of the torus are
not affected).

The Hanany–Witten transition induces a bijection of T-fixed points. This bijection can best
be understood through transformations of tie diagrams and tables-with-margins. The action of
the Hanany–Witten transition on tie diagrams is described by Figure 6. In words, switch U
and V while keeping all ties attached. If there was a tie between U and V , remove it, and if
there was no such tie, create one. The Hanany–Witten transition acts on tables-with-margins
by perturbing the separating line while leaving the BCT fixed.

By a sequence of Hanany–Witten transitions, one may transform any brane diagram into
a brane diagram with all NS5 branes on the left and all D5 branes on the right. Such a brane
diagram will be called “separated”, as will the associated bow variety. Figure 7 depicts the result
of applying this procedure to separate the tie diagram of Figure 2. Separated bow varieties will
be the focus of the remainder of this work. Any results derived can be translated to non-
separated bow varieties by making a suitable reparametrization of T. In practical terms, this
amounts to adjusting the exponents of h in the formulas.

3 A combinatorial formula for tangent weights

Fix a separated brane diagram D and torus fixed point p ∈ C(D)T. We will give a combinatorial
formula for the tangent weights at p (i.e., K-theoretic Chern roots of Tp C(D)) in terms of the
associated table-with-margins. Unlike the approach used to derive (2.2), this formula will return
the tangent weights without the need for any further cancellations or simplifications. Note that
since the bow variety is separated, the separating line always runs along the left and bottom
sides. We ignore it and consider only the BCT M . Again, since the bow variety is separated,
we have

Mij =

{
1 if there is a tie between Vi and Uj ,

0 otherwise.
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Definition 3.1. For 0 ≤ i ≤ n, 1 ≤ j ≤ m, define

sij =
i∑

i′=1

Mi′j .

Furthermore, define a “kl-pair” to be a tuple of indices (i, j, j′) such that Mij = k, Mij′ = l,
and j < j′.

Theorem 3.2. Given a separated brane diagram D and a fixed point p ∈ C(D)T, we have

Tp C(D) =
∑

(i,j0,j1)01-pair

(
uj0

uj1

hsij1−sij0 +
uj1

uj0

hsij0−sij1+1

)

as elements of K0
T(p).

Proof. To aid in our proof, let us establish some notation. For 1 ≤ j ≤ m and r ∈ N, let

r ∗ uj = uj +
uj

h
+

uj

h2
+ · · ·+ uj

hr−1
∈ K0

T(p).

Using this notation, we can rephrase the formula for the fixed point restriction of tautological
bundles of Section 2.3 as

ξk|p =



m∑
j=1

hk−n(skj ∗ uj) if k ≤ n,

m∑
j=k−n+1

snj ∗ uj if n ≤ k ≤ n+m− 1,

0 otherwise.

(3.1)

Let ξ
(j)
k be the subspace of ξk|p corresponding to the Uj butterfly. Then, each of the summands

in (3.1) corresponds to a ξ
(j)
k . Namely, we have

ξ
(j)
k =


hk−n(skj ∗ uj) if k ≤ n,

snj ∗ uj if n ≤ k ≤ n+ j − 1,

0 otherwise.

(3.2)

It will also be helpful to summarize the tangent bundle formula (2.1) using the diagram

ξ1 · · · ξn−1 ξn ξn+1 · · · ξn+m−1

u1 u2 um−1 um

1

−1−h

h

1

h

1

−1−h

h

−1

1−h

−1+h

h

1−h

h

1−h

−1+h

h1 1 1 1
(3.3)

where ξk = ξXk
. Finally, divide the diagram (3.3) into four types of pieces
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ξi−1 ξi

−1

1

h

−h

P1i = Hom(ξi−1, ξi) + hHom(ξi, ξi−1) − End(ξi−1) −
hEnd(ξi) for 1 ≤ i ≤ n.

ξn+j−1 ξn+j1−h

−1+h

P2j = (1 − h)Hom(ξn+j , ξn+j−1) + (−1 + h) End(ξn+j)
for 1 ≤ j ≤ m.

ξn+j−1 ξn+j

uj

h1
P3j = Hom(uj , ξn+j−1)+hHom(ξn+j ,uj) for 1 ≤ j ≤ m,
where ξn+m = 0 by convention.

ξn

−1+h

P4 = (−1 + h) End(ξn).

Inspecting the tangent bundle formula (2.1) and the fixed point restriction formula (3.1), we
see that

Tp C(D) = f(h) +
∑
j0 ̸=j1

uj0

uj1

gj0j1(h),

where f, gj0j1 ∈ C
[
h±1

]
for all 1 ≤ j0, j1 ≤ m. Fix j0 < j1 and define

δ
(j)
i = ξ

(j)
i − ξ

(j)
i−1 and ζ

(j)
i = ξ

(j)
i − hξ

(j)
i−1.

Then, the contribution of P1i to gj0j1 is given by P̂1i = −hHom
(
ζ
(j1)
i , δ

(j0)
i

)
. The only nonzero

contribution of the P2j is

P̂2j0 = (1− h)Hom
(
ξj1n+j0

, ξ
(j0)
n+j0−1

)
.

From (3.2), we have ξ
(j1)
n+j0

= ξ
(j1)
n and ξ

(j0)
n+j0−1 = ξ

(j0)
n . Thus, P̂2j0 cancels with the contribu-

tion P̂4 of P4. Finally, the only nonzero contribution of the P3j is

P̂3j0 = hHom
(
ξ
(j1)
n+j0

,uj0

)
.

Summing everything together yields

uj0

uj1

gj0j1 = P̂3j0 +

n∑
i=1

P̂1i =

n∑
i=1

P̂1i +

m∑
j=1

(
P̂2j + P̂3j

)
+ P̂4

= hHom
(
ξ
(j1)
n+j0

,uj0

)
−

n∑
i=1

hHom(ζ
(j1)
i , δ

(j0)
i )

= hHom
(
ξ(j1)n ,uj0

)
−

n∑
i=1

hHom(ζ
(j1)
i , δ

(j0)
i ).

Note that ξ
(j)
n =

∑n
i=1 h

n−iζ
(j)
i . Substituting into the first term above results in

uj0

uj1

gj0j1 =

n∑
i=1

hHom
(
ζ
(j1)
i ,hi−nu0 − δ

(j0)
i

)
.
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The following formulas can be derived easily from (3.2):

δ
(j)
i = hi−n(uj + (Mij − 1)ujh

−sij ), ζ
(j)
i = hi−n

(
Mijujh

−sij+1
)
.

From these formulas, we can deduce

gj0j1 =

n∑
i=1

(1−Mij0)Mij1h
sij1−sij0 =

∑
i

(i,j0,j1) 01-pair

hsij1−sij0 .

From a symmetric calculation, one can obtain

gj1j0 =
∑
i

(i,j0,j1)01−pair

hsij0−sij1+1.

Alternatively, once can appeal to the selfduality of the tangent bundle: T C(D) = hT C(D)∨.
This selfduality property follows from general considerations but also from the explicit construc-
tion of a polarization bundle in [23, Section 4.4.2].

Finally, a similar calculation can be done for f

P̂1i = −
m∑
j=1

(Mijh
sij +Mij(Mij − 1)), P̂2j = 0,

P̂3j =

snj−1∑
k=0

h−k, P̂4 = (−1 + h)
m∑
j=1

End
(
ξ(j)n

)
.

Since Mij(Mij − 1) = 0, we have

n∑
i=1

P̂1i = −
m∑
j=1

n∑
i=1

Mijh
sij = −

m∑
j=1

snj∑
k=1

hk,

from which is easy to see that
∑

i P̂1i +
∑

j P̂3j = −P̂4. It follows that f = 0, completing the
proof. ■

Suppose now that D is not separated and p ∈ C(D)T. By applying a sequence of Hanany–
Witten transitions, the tie diagram for p can be transformed into a separated diagram D̃,
representing a fixed point p̃ ∈ C(D̃)T̃ on a separated bow variety. This changes the separating
line, but not the BCT. Hence, we can immediately apply Theorem 3.2 to obtain the tangent
weights at p̃. As discussed in Section 2.4, these differ from the tangent weights at p only in the
exponents of h. Starting from D̃ and going to D, each time we move a D5 brane U to the left,
we must multiply u by h.

Corollary 3.3. Let D be a brane diagram and p ∈ C(D)T. Let M be the corresponding BCT
and σj be the number of entries in the j-th column of M lying below the separating line. Then,
the tangent weights at p are given by

Tp C(D) =
∑

(i,j0,j1)01-pair

(
uj0

uj1

hsij1−sij0+σj0
−σj1 +

uj1

uj0

hsij0−sij1+σj1
−σj0

+1

)
.

Observe that the tangent weights come in pairs of the form w+hw−1. This is a manifestation
of the fact that bow varieties admit polarization bundles [23, Section 4.4.2]. Theorem 3.2
combined with the dimension formula [17, equation (4)] gives us a roundabout proof of the
following purely combinatorial result.
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Corollary 3.4. Let M be a BCT with margins r, c. Then, the number of 01-pairs in M is

1

2

(
m∑
j=1

(cj(cj + 1) + cj−1(cj−1 + 1)) + 2
n∑

i=1

ri−1ri − 2
m∑
j=1

c2j − 2
n−1∑
i=1

r2i

)
,

where cj =
∑j

j′=1 cj′, and ri =
∑i

i′=1 ri′. In particular, this number depends only on the margins.

4 Butterfly surgeries and invariant curves

In this section, we will develop a combinatorial representation of T-invariant curves involving
surgery operations on pairs of butterflies (see Section 2.2). Our goal is to identify all T-invariant
curves. We will accomplish this using an exhaustive approach. For each fixed point p and
tangent weight w that appears with multiplicity k at p, we will produce a k-dimensional pencil
of invariant curves with tangent weight w at p.

4.1 Torus invariant curves

Let us begin by collecting some standard facts regarding invariant curves that will be used
throughout what follows. These facts can be found in [9, Section 7] and [2, Section 7.2]. We
address specifically the properties of invariant curves in bow varieties, though these properties
are quite general and hold for a much larger family of spaces. Fix a bow variety C(D) with
the corresponding action by the torus T. By a “T-invariant curve” γ, we mean the closure of
a 1-dimensional T-orbit in C(D). The following are true of T-invariant curves:

� A 1-dimensional T-orbit is isomorphic to C×, and its closure is obtained by adding up to
two T-fixed points.

� An invariant curve is compact if it contains two fixed points and noncompact otherwise.
Compact invariant curves can be parametrized by equivariant embeddings CP1 → C(D),
and noncompact invariant curves with one fixed point can be parametrized by equivariant
embeddings C → C(D).

� If γ is an invariant curve, and p ∈ γ is a fixed point, then Tpγ is a T-weight space
of Tp C(D). If p1, p2 ∈ γ are two distinct fixed points, then the T-weights of Tp1γ and Tp2γ
are reciprocols.

� In contrast to [9], bow varieties may contain infinitely many invariant curves. In this case,
the curves can be arranged into parametrized families or “pencils”. Pencils of invariant
curves will be described in Section 4.2. An invariant curve is a special case of a pencil,
where the dimension of the pencil is 1.

The pencils of invariant curves have important implications for the study of the equivariant
cohomology of C(D). When C(D) is equivariantly formal and has only finitely many fixed
points and invariant curves (no multidimensional pencils), [9] shows that the map H∗

T(C(D)) →
H∗

T
(
C(D)T

)
induced by the inclusion of the fixed point locus is an injective ring homomorphism

whose image is characterized by simple matching conditions on pairs of fixed points joined by an
invariant curve. When multidimensional pencils of invariant curves are present, however, these
matching conditions are not sufficient, and must be supplemented by more general matching
conditions. See [4] and [2, Section 7.4]. It also appears that not all bow varieties are equivariantly
formal [10].

From now on, we will only be interested in invariant curves containing at least one fixed
point. The following result will be pivotal in classifying all such curves.
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Figure 8. Fixed point with the site of a butterfly surgery outlined.

Proposition 4.1. Let C(D) be a bow variety and p ∈ C(D)T. Then, we have

(1) All T-invariant curves containing p are smooth.

(2) If γ1 and γ2 are T-invariant curves containing p, and Tpγ1 = Tpγ2 as vector subspaces
of Tp C(D), then γ1 = γ2.

Proof. Let p ∈ U ⊂ C(D) be an affine T-invariant neighborhood. By the Luna slice theo-
rem [12, Appendix of Chapter 1], there exists a T-equivariant morphism ϕ : V → Tp C(D) such
that p ∈ V ⊂ U is a T-invariant neighborhood, ϕ(p) = 0, and ϕ is étale. Due to equivariance,
ϕ maps invariant curves containing p to invariant curves containing 0. It can be easily seen from
the structure of the tangent weights provided by Corollary 3.3 that the only invariant curves
in Tp C(D) containing 0 are lines. Étale morphisms induce isomorphisms on tangent spaces.
This proves (1). Moreover, since our spaces are smooth, ϕ restricts to a diffeomorphism on some
analytic neighborhood of p. This proves (2). ■

Our approach will be to construct a collection of invariant curves containing p such that
every T-invariant tangent line at p appears as the tangent line to one of the curves. Then,
Proposition 4.1 will guarantee that all curves containing p are accounted for.

4.2 Butterfly surgery

A fixed point p1 ∈ C(D)T corresponds to a butterfly diagram, that is, a collection of butterflies,
one centered on each D5 brane. We stack the butterflies on top of each other, so that the centers
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of the butterflies listed from top to bottom go from left to right in D. Fix two butterflies β1
and β′1 with centers U and U ′, respectively. Suppose that there is a (possibly disconnected)
subgraph s of β1, such that stacking s below β′1 and creating new edges between β′1 and s
according to the rules of Section 2.2 results in a butterfly β′2. The subgraph s, called the site
of the surgery, must be translated vertically, in a rigid fashion, without any lateral movement,
rotation, or deformation, and we do not create new edges within s. Let β2 be obtained by
deleting s and all adjacent edges from β1, and assume that β2 is also a butterfly. The operation
of replacing β1 with β2 and β

′
1 with β

′
2 is called a “butterfly surgery”. It transforms the butterfly

diagram for p1 into the butterfly diagram for another fixed point p2 ∈ C(D)T. We will use S to
denote butterfly surgeries. Clearly, in a butterfly surgery, s must contain all edges of β1 with
both endpoints within s. Moreover, the 0-momentum condition forces s to be A, A−1, B, C,
D-invariant. By this, we mean that all B, C, D edges in β1 incident to s are directed into s,
and s contains all incident A edges.

An invariant curve arises from a butterfly surgery as follows. Consider the newly created
edges in the butterfly diagram for p2. Each edge starts in β′1 and ends in the translated copy
of s, which we will call s′. Create the corresponding edges starting in β′1 and ending in s ⊂ β1 in
the butterfly diagram for p1, as in Figure 10. Identifying vertices with basis vectors of the WX

spaces and interpreting the edges as linear maps, the resulting graph gives an element p̃γ ∈ M.
The 0-momentum condition holds by construction, as the rules in Section 2.2 governing the
vertices and edges of a butterfly directly reflect the 0-momentum conditions (see the proof
of [17, Theorem 4.8]). The S1, S2, and ν stability conditions hold as well.

Lemma 4.2. The point p̃γ ∈ M satisfies the stability conditions S1, S2, and ν.

Proof. For each D5 brane U0, S1 and S2, place a condition on the AU0 , BU0 , aU0 , bU0 maps.
Let s ∈ ker(AU0) ∩ ker(bU0). Inspecting the structure of p̃γ , s must be in the span of the vertices
of the U0 butterfly above the source of the bU0 edge. However, sufficiently many applications
of BU0

+ will result in a vector no longer in the kernel of bU0 . This proves S1. For S2, observe
that im(AU0) contains all vertices under U0

− except possibly for some in the U0 butterfly. Any
vertex of the U0 butterfly can be reached from im(aU0) by sufficiently many applications of BU0

− .

To verify the ν stability condition, observe that for any D5 brane U0, every vertex of the U0

butterfly can be reached from the target vertex of aU0 or from the highest vertex under U+
0 by

following a sequence of A, A−1, B, C, D edges. By following an A−1 edge, we simply mean
following an A edge in the direction opposite to its orientation. ■

It follows that p̃γ ∈ M̃s descends to a point pγ ∈ C(D). Denote the T-orbit closure of pγ by γ.

For a vertex v of the butterfly diagram, recall that its height (see Definition 2.2) is denoted
by y(v). Now, let v ∈ s ⊂ β. Applying the surgery yields the corresponding vertex v′ ∈ s′ ⊂ β′.
The change in height ∆Sy = y(v′)− y(v) is constant with respect to v ∈ s. Consider the action
of T on pγ . By a suitable change of basis in WX spaces (the G-action), a representation of the
resulting point can be obtained by multiplying the new edges by the weight h−∆Syu/u′ and
leaving the other edges alone. By fixing u, h and taking u′ → ∞, we see that p1 ∈ γ.

Next, set u′ = h = 1, so that the new edges are acted upon by u. Apply the G-action that
multiplies each vertex in s by u−1. Since all edges in β1 adjacent to s point into s, those edges
will be multiplied by u−1. Meanwhile, the factor on the new edges will cancel to 1, and all other
edges will be unchanged. Taking u → ∞, the edges adjacent to s are killed, leaving behind β2
and β′2. Thus, p2 ∈ γ.

There is a surjective map C× → T.pγ given by sending t ∈ C× to the point obtained by
multiplying the new edges by t. It follows that γ is at most 1-dimensional. Since γ contains
two distinct fixed points p1, p2, it must be that dim(γ) = 1. Therefore, γ is a compact invariant
curve. Its tangent weight at p1 is precisely h−∆Syu/u′, and its tangent weight at p2 is h

∆Syu′/u.
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Figure 9. New fixed point resulting from butterfly surgery.

From general considerations, γ is isomorphic to CP1. We obtain an explicit parametrization
by multiplying each of the new edges by t ∈ C. This gives us an isomorphism C → γ \ {p2}.
Compactifying C with a point ∞ and mapping ∞ to p2 yields a parametrized curve γ : CP1 →
C(D) (we are abusing notation and using γ to refer both to the parametrization and its image).
Note that performing the inverse butterfly surgery yields the same invariant curve with a different
parametrization, one with γ(0) = p2.

Suppose s has k connected components s1, . . . , sk. By multiplying the new edges pointing
into si by zi, where z = (z1, . . . , zk) ∈ (C \ {0})k, we obtain a k-parameter family of T-invariant
curves containing p1 and p2. In the closure of their union, there are other fixed points formed by
stacking some of the connected components but not others, as well as invariant curves between
them. For each subset I ⊂ {1, . . . , k}, consider the fixed point pI to be obtained from the
butterfly surgery with site the union of components si for i ∈ I. So p1 = p∅ and p{1,...,k} = p2.

Now consider the hypercube
(
CP1

)k
endowed with the diagonal T-action with every tangent

weight equal to h−∆Syu/u′ at (0, . . . , 0). We obtain a fixed point xI ∈
(
CP1

)k
for each I ⊂

{1, . . . , k} where the i-th component of xI is ∞ if i ∈ I and 0 otherwise. Next we obtain
a T-equivariant map ΓS :

(
CP1

)k → C(D) that sends each xI to pI . We define this map first
on the interior and on the facets containing x∅ by sending each z = (z1, . . . , zk) ∈ Ck to the
butterfly diagram of p∅ with new edges ofS pointing into si multiplied by zi, providing all curves
containing p∅ in the image of ΓS. We similarly define that for each z = (z1, . . . , zk) ∈

(
CP1

)k
with ∞ in each component of index in I ⊂ {1, . . . , k}, ΓS maps z to the butterfly diagram of pI
with all new edges of S that still can be drawn in the butterfly diagram of pI (the ones with site
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Figure 10. Explicit construction of an invariant curve corresponding to butterfly surgery. The dashed
lines are the new edges added to the butterfly diagram. Taking the T-orbit closure of the element of M̃s

represented by this graph yields an invariant curve with tangent weight
(
u1

u2
h
)±1

at its fixed points.

components si where zi is finite) multiplied by the appropriate finite z-values. Despite the fact
that only the curves in ΓS

(
(C \ {0})k

)
are between p1 and p2, we will still call ΓS a pencil of

invariant curves between p1 and p2. Consider the k individual butterfly surgeries corresponding
to each of the k connected components of s. These butterfly surgeries produce invariant curves
γ1, . . . , γk. We will show in Proposition 6.3 that the tangent spaces of these curves at p1 (and
also at p2) are linearly independent. Moreover, we have

∀z ∈ Ck \ {0}, ∂

∂t

∣∣∣∣
t=0

ΓS(tz) =

k∑
i=1

ziγ
′
i(0).

It follows that each invariant curve in ΓS has a distinct tangent space at p1 and is therefore
distinct. Similar considerations can be made for each other fixed point pI . In other words, ΓS is
injective. The results of this section are summarized in the following lemma.

Lemma 4.3. Suppose a butterfly surgery S sends a T-fixed point p1 to the T-fixed point p2.
Let the site s be moved from the U butterfly to the U ′ butterfly by S, where k is the number of
connected components of s. Then, there is a k-dimensional pencil ΓS :

(
CP1

)k → C(D), a T-equ-
ivariant map where ΓS

(
(C \ {0})k

)
consists of compact invariant curves containing p1 and p2.

Moreover, each curve in the pencil has tangent weight u
u′h−∆Sy, at p1, where ∆Sy = y(v′) −

y(v), for any v ∈ s and corresponding v′ ∈ s′. Here, y denotes the height of a vertex (see
Definition 2.2).
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z1

z2

Figure 11. Explicit 2-dimensional pencil of invariant curves with tangent weight
(
u1

u2

)±1
at its fixed

points.

It will be shown that butterfly surgeries capture all of the compact invariant curves in C(D).
To do so, our approach also requires us to construct noncompact invariant curves.

4.3 Botched butterfly surgery

For the remainder of Section 4, we will assume that M is separated. Analogous results will
follow for the nonseparated case by tracing the relevant constructions through Hanany–Witten
transitions. See the proof of [15, Proposition 8.1] for the explicit construction of the Hanany–
Witten isomorphism. We explicitly trace a butterfly through the Hanany–Witten transition
in [23, Section 3.2.4]. First, let us define a surgery operation that closely resembles a butterfly
surgery, but is not exactly a butterfly surgery.

Let D be a separated brane diagram with n NS5 branes and m D5 branes. As in Section 3,
index the branes from left to right. The NS5 branes are denoted V1, . . . , Vn, the D5 branes are
denoted U1, . . . , Um, and the segments (D3 branes) are denoted X0, X1, . . . , Xn+m, where X0

andXn+m are the infinite left and right segments. We will divide D into a “left side” and a “right
side”. The left side comprises X0, . . . , Xn and V1, . . . , Vn. The right side is the remaining portion
of the diagram. The notion of left and right side extends naturally to butterflies and butterfly
diagrams. The left side of a butterfly always has a certain inverted staircase-like shape. See
Figure 12 for an example.

Fix p ∈ C(D)T and consider its butterfly diagram. Note that the portion of the butterfly
diagram below Xn and the right side will be the same for all fixed points. Consider a surgery
operation S as in Section 4.2 on the left side of the butterfly diagram. That is, we take a B, C,
D-invariant subgraph s of the left side of the Uj butterfly and vertically translate it to stack it
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1 2 3 4 5 7 9 9 10 11 6 4

Figure 12. The butterfly diagram of a fixed point of a separated bow variety. The cyan dashed
line indicates the boundary between the “left side” and “right side”. Two different botched butterfly
surgeries are outlined in solid gray. The surgery with site in the U1 butterfly is subject to and satisfies
constraint (4.1). The other surgery is not subject to this constraint. The additional edges and vertices
added to s to form s are outlined in dotted gray.

below the left side of the Uj′ butterfly, for some 1 ≤ j ̸= j′ ≤ m. Assume that the left side of the
resulting diagram is the left side of some butterfly diagram (not necessarily associated to the
same bow variety). Note that all butterfly surgeries meet these conditions. The key difference
is that butterfly surgeries cannot alter the Xn column. If s includes at least one vertex in
the Xn column, then call S a “botched butterfly surgery”. See Figure 12 for an example. In
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Section 4.2, the B, C, D-invariance of s emerged from other constraints on s. Here, we must
impose this property as an additional condition. We will produce a noncompact invariant curve
from a botched butterfly surgery following the approach of Section 4.2.

The right side of the butterfly diagram is organized in a grid formed by horizontal leftward
edges, which represent A maps, and vertical downward edges, which represent −B maps (see
Figure 12). Let s be the minimal A, A−1, B, C, D-invariant subgraph containing s. Let s′ be
a copy of s translated according to S. Take the edges extending from the Uj′ butterfly to s′

imputed by the rules of Section 2.2, and create the corresponding edges between the Uj′ butterfly
and s. As in Section 4.2, the resulting graph determines an element p̃γ ∈ M.

If j > j′, it is easy to verify the 0-momentum condition. If j < j′, all momentum conditions
will be satisfied except for BUjAUj − AUjB

′
Uj

+ aUjbUj = 0. Due to the structure of separated
brane diagrams, the number of vertices in the Xn, Xn+1, . . . , Xn+k−1 column of the Uk butterfly
is given by ck. Recall that c is the margin vector of D5 brane charges (see Section 2.2). Suppose s
contains the bottom r vertices of the Xn column, where

r ≥ cj − cj′ + 1. (4.1)

Label the vertices of the Xn+j−1 column of the Uj butterfly from top to bottom as v1, . . . , vcj .
Label the vertices of the Xn+j column of the Uj′ butterfly from top to bottom as v′1, . . . , v

′
cj′
.

Add additional edges according to the following rule:

� Create negative blue edges from v′k+cj′−cj+r to vk for 1 ≤ k ≤ cj − r. Recall that the blue

edges represent A.

� Create a negative green edge from v′cj′−cj+r to the Uj framing vertex. Recall that the

green edge directed into the framing vertex represents −b (Section 2.2).

This corrects the momentum, so that the 0-momentum condition is satisfied. This rule is
depicted in Figure 14a. The point p̃γ is illustrated in Figure 13 for both of the surgeries in
Figure 12.

Using similar arguments to those in Section 4.2 (see Lemma 4.5), one can show that p̃γ ∈ M̃s,
the orbit of its image pγ ∈ C(D) is 1-dimensional, and its closure γ is an invariant curve con-
taining p. Additionally, if s has k connected components, then a k-dimensional pencil ΓS of
invariant curves containing p can be constructed. These results are summarized by the following
analog to Lemma 4.3. The question of compactness is postponed until Section 6.

Lemma 4.4. Fix a separated bow variety C(D) and p ∈ C(D)T. Let S be a botched butterfly
surgery moving the site s from the Uj butterfly to the Uj′ butterfly. If j < j′, impose the
additional condition that s contains at least cj − cj′ +1 vertices of the Xn column, where c is the
margin vector of D5 brane charges. Then, there exists a k-dimensional pencil ΓS of T-invariant
curves containing p. Each curve has tangent weight u

u′h−∆Sy, at p.

4.4 Nonsurgery curves

We retain the conventions of Section 4.3 for this section. Fix 1 ≤ j < j′ ≤ m. We will construct
max{0, cj′ − cj} many invariant curves. To construct the i-th curve,

� create a green edge from v′i to the Uj framing vertex,

� create blue edges from v′i+k to vk for 1 ≤ k ≤ cj .

Figure 14b depicts these added edges. Using similar arguments to those in Section 4.2 (see
Lemma 4.5), one can show that this results in a point of C(D) with a 1-dimensional orbit
having p in its closure. The tangent weight of this curve at p can easily be determined by
examining the added b edge and comparing the heights of the target and source.
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−1

−1

Figure 13. Construction of the invariant curves corresponding to the two botched butterfly surgeries in
Figure 12.

Lemma 4.5. Suppose p̃γ ∈ M is obtained through a botched butterfly surgery or nonsurgery
construction with respect to p ∈ C(D)T. Then,

(1) p̃γ satisfies the S1, S2, and ν stability conditions.

(2) pγ ̸= p, so that dim(T.pγ) > 0.
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Uj

-1

-1

-1

(a) botched surgery

Uj

(b) nonsurgery

Figure 14. Local depictions of (a) the curve associated to a botched surgery moving a part of a higher
butterfly to a lower butterfly and (b) a nonsurgery invariant curve. In (a), those visible vertices that are
contained in s are outlined in gray.

Proof. (1) S1 follows from the fact that the A maps are injective. S2 can be verified in the
same way as for butterfly surgeries (see Lemma 4.2). For the ν condition, we have to modify
the strategy for butterfly surgeries slightly. The novelty is in botched butterfly surgeries moving
part of a higher butterfly to a lower butterfly and nonsurgery curves. In these cases, for some
vertices w′ of the Uj′ butterfly under U+

j , there are two distinct AUj edges with source w′.
Namely, Aγ

Uj
(w′) = AUj (w

′) + w, where w is a vertex of the Uj butterfly under U−
j , and we use

the superscript of γ to distinguish between the maps of p̃ and p̃γ . However, w can be obtained by
repeatedly applying B−

Uj
to aUj (±1). Any vertex of the Uj′ butterfly can be obtained by applying

a sequence of A, B, C, D maps to aUj′ (±1) and canceling out the components of AUj landing
in the Uj butterfly, as described above.

(2) Let p̃ ∈ M̃s be the point described by the butterfly diagram of p. The statement for bot-
ched butterfly surgeries moving part of a higher butterfly to a lower butterfly and nonsur-
gery curves follows immediately from the fact that bUj vanishes in p̃ but not in p̃γ . For
butterfly surgeries moving part of a lower butterfly to a higher butterfly, let ℓ = d

Uj′

U−
j′
, the number

of vertices of the Uj′ butterfly below U−
j′ . So, B

ℓaUj′ vanishes in p̃ but not in p̃γ . ■

Lemma 4.6. Let C(D) be a separated bow variety and let c = (c1, . . . , cm) denote the margin
vector of D5 brane charges. Let p ∈ C(D)T, and 1 ≤ j < j′ ≤ m. Then, there are max{0, cj′−cj}
invariant curves containing p with tangent weights

uj

uj′
h,

uj

uj′
h2, . . . ,

uj

uj′
hmax{0,cj′−cj}

at p.
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1 0 0
0 0 1
0 0 1
1 0 0
1 0 0
1 1 0
0 1 1
0 0 0
1 0 0
0 0 1


(a) (b)

Figure 15. The (a) BCT and (b) Young diagrams associated to the fixed point of Figure 12. Our
(nonstandard) convention is to draw the Young diagrams aligned on the right with longer rows on top.

4.5 Young diagram surgery

The combinatorics of Sections 4.2 and 4.3 can be reformulated using the more familiar lan-
guage of partitions and Young diagrams. Again, we fix a separated bow variety C(D) and
a fixed point p ∈ C(D)T. Let M be the associated BCT and c = (c1, . . . , cm) be the margin
vector of D5 brane charges. For each D5 brane Uj , define a partition λ(j) with cj distinct
parts λ

(j)
1 > · · · > λ

(j)
ci > 0 by

(1) letting i1 < i2 < · · · < icj be the indices for which M(ik, j) = 1 and

(2) setting λ
(j)
k = n− ik + 1.

In other words, the parts of the partition correspond to the vertical positions of the 1’s in the j-th
column of M measured from the bottom. The Young diagrams associated with these partitions
will be drawn in a nonstandard way with the boxes aligned on the right. Each row of boxes
represents a part of the partition, and the longer rows will be drawn on top. See Figure 15 for
an example. We will use λ(j) to denote the partition as well as its Young diagram.

Note that these Young diagrams can also be realized by taking the vertices in the left side of
each butterfly, realigning them at the top, and replacing them with boxes. Under this realization,
butterfly surgeries and botched butterfly surgeries can be realized as surgery operations on Young
diagrams. For j ̸= j′, let s be a set of boxes of λ(j) with the property that if a box is in s,
then any box below it is also in s. Suppose deleting s from λ(j) leaves a Young diagram with
distinct parts, and stacking those boxes below λ(j

′) results in a Young diagram with distinct
parts. Then, call the operation on the set of Young diagrams

{
λ(j) | 1 ≤ j ≤ m

}
that deletes s

from λ(j) and stacks it below λ(j
′) a “Young diagram surgery”. If s does not contain any boxes

in the rightmost column, then the Young diagram surgery corresponds to a butterfly surgery.
Otherwise, if s contains at least one box of the rightmost column, then the Young diagram
surgery corresponds to a botched butterfly surgery. The constraint (4.1) is reformulated as

s contains at least cj − cj′ + 1 boxes of the rightmost column. (4.2)

This is simply a reformulation of Sections 4.2 and 4.3. By Lemmas 4.3 and 4.4, Young diagram
surgeries satisfying the additional constraint (4.2) whenever a box in the rightmost column is
moved correspond to pencils of invariant curves. Given a box bx in a Young diagram λ, define
its height y(bx) by y(bx) = 1 − i, where bx belongs to the i-th row of λ. The tangent weight
of the invariant curve is given by comparing the heights of any box in s before and after the
surgery. Namely, the exponent of h is −∆Sy = y(bx)− y(bx′), where bx is any box in s and bx′
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(a) w = u1
u3

h (b) w = u3
u2

Figure 16. The two botched butterfly surgeries of Figure 12 reformulated as Young diagram surgeries.
The sites are shaded gray. Both sites are connected, so exactly two curves are obtained (no infinite
pencils). The tangent weights w of the corresponding invariant curves are also shown.

is the result of applying S to bx. Treating the Young diagram as a subset of R2 and each box as
a closed square, the number of connected components of s is precisely the number of connected
components of the corresponding (botched) butterfly surgery. In Figure 16, we reformulate
Figure 12 in the language of Young diagram surgeries.

Lemma 4.7. Let D be a separated brane diagram and p ∈ C(D)T. Let S be a surgery on the
corresponding Young diagrams that moves boxes from λ(j) to λ(j

′). If j < j′ and the site s
contains at least one box of the rightmost column, then impose the additional constraint that s
contains at least cj − cj′ +1 boxes of the rightmost column, where c = (c1, . . . , cm) is the margin
vector of D5 brane charges. Then, there is a k-dimensional pencil ΓS of T-invariant curves
containing p with tangent weight

uj

uj′
h−∆Sy, where k is the number of connected components

of s.

Lemma 4.8. Let S be a Young diagram surgery with connected site s. Then, S is uniquely
determined by its action on any box in s.

Proof. Since Young diagram surgeries are rigid translations, the action of S on a box in s
completely determines the action of S on any other box in s. It is trivial to show that the
action S on any box in s completely determines whether or not each adjacent box is in s. The
result follows from these two statements and the connectedness of s. ■

Corollary 4.9. Let S1 and S2 be two connected Young diagram surgeries with ∆S1y = ∆S2y.
Then, their sites are either disjoint or equal.

5 BCT block swap moves

An elementary result on BCTs is that any two BCTs with the same margin vectors are related
by a sequence of “swap moves”. A swap move acts on a BCT M by taking a ( 1 0

0 1 ) minor
and replacing it with ( 0 1

1 0 ) or vice-versa. A similar type of combinatorial move will provide an
alternative combinatorial code for compact T-invariant curves.

Remark 5.1. Swap moves are also used in [26], where they are called “simple moves” and
appear in a generalization of the Chevalley–Monk formula.

Let us first introduce some preliminary notions.
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Definition 5.2. Let M be the BCT of some p ∈ C(D)T. Call a minor

M =M(i1, i2, j1, j2) = (Mij)
i=i1,i1+1,...,i2
j=j1,j2

consisting of two columns and any number of consecutive rows of M a “block”. Furthermore,
define

δ
(
M
)
=



i2∑
i=i1

(Mij1 −Mij2) if j1 < j2,

i2∑
i=i1

(Mij2 −Mij1) if j1 > j2.

Call a block M “matched” if δ
(
M
)
= 0.

The following result provides an algorithmic way of constructing Young diagram surgeries.
It will be a key ingredient in the proof of our main result, Theorem 6.5.

Proposition 5.3. Let M be the BCT of some p ∈ C(D)T where D is separated with m D5
branes. Then, using Definition 3.1,

(1) Every 01-pair (i, j0, j1) or 10-pair (i, j1, j0) in M corresponds to a Young diagram surgery
S moving boxes from λ(j1) to λ(j0).

(2) In the context above, if M(i, i′, j0, j1) is matched for some i′ > i, then the site s of S does
not contain any boxes of the rightmost column of λ(j1). If no such matched block exists,
then s contains

∣∣δ(M(i, n, j0, j1)
)∣∣ boxes of the rightmost column of λ(j1).

(3) The relative displacement of the boxes during S is given by

∆S(y) =
i∑

k=1

(Mkj1 −Mkj0)− 1 = sij1 − sij0 − 1.

Proof. We will provide the proof for 10-pairs. The result for 01-pairs follows from a symmetric
argument. Make the simplifying assumption that M is n × 2. The general case follows from
applying this argument to every pair of columns in M . To simplify the notation, let M(i1, i2) =
M(i1, i2, 1, 2). Suppose the i1-th row of M is (1, 0). Let M be the smallest matched block of
the form M(i1, i2) where i1 < i2, if such a block exists. Otherwise, if no such matched block
exists, let M = M(i1, n). Recall that each 1 in the j-th column of M represents a part of
the Young diagram λ(j). Let λ

(j)
be the partition consisting of the parts of λ(j) associated

with the 1’s in the j-th column of M . Denote the number of parts of λ
(j)

by cj . Clearly,∣∣δ(M(i1, i + 1)
)
− δ
(
M(i1, i)

)∣∣ ≤ 1 for all i1 ≤ i < n, and δ
(
M(i1, i1)

)
= 1. If it were the

case that δ
(
M
)
< 0, then there would exist i > i1 for which δ

(
M(i1, i)

)
= 0. It follows that

δ
(
M
)
≥ 0, and therefore c1 ≥ c2.

Since the first row of M is (1, 0), we have

λ
(1)
1 > λ

(2)
1 .

We claim that λ
(1)

i+1
≥ λ

(2)

i
for all i = 1, . . . , c2 − 1. Suppose to the contrary that for some i, we

have

λ
(1)

i+1
< λ

(2)

i
.
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Let the (1, 0) row corresponding to λ
(1)

i+1
be row i′+1 of M . Then, we have δ

(
M(i1, i

′+1)
)
≤ 1.

It follows that δ
(
M(i1, i

′)
)
≤ 0. By the intermediate value argument above, there is i1 < i < i2

such that M(i1, i) is matched. This contradicts the definition of M .

These inequalities imply that there is a connected Young diagram surgery which moves
λ
(1)

i
− λ

(2)

i
> 0 boxes from λ

(1)

i
to λ

(2)

i
. If M is matched, then this surgery constitutes a surgery

on λ(1) and λ(2). Otherwise, this surgery can be extended to a surgery on λ(1) and λ(2) by moving
the bottom δ

(
M
)
> 0 rows of boxes in λ

(1)
completely below λ(2). The displacement ∆Sy is

easily seen to be
∑i1

k=1(Mk1 −Mk2)− 1. ■

Let M be a minimal matched block whose top row is a 01- or 10- pair. The proof of Propo-
sition 5.3 shows that there is a connected butterfly surgery transforming M by exchanging the
columns of M . The displacement of the surgery is given by applying the formula in Proposi-
tion 5.3 (3) to the top row of M . Also note that among any set of consecutive minimal matched
blocks, those whose top row is a 10- or 01-pair are associated with surgeries with disjoint sites
and the same displacement. Conversely, any matched block can be decomposed uniquely into
consecutive minimal matched blocks. It follows that every matched block with top row (1, 0)
or (0, 1) is associated with a pencil of compact invariant curves.

Definition 5.4. Let M be a BCT. A “block swap move” ψ on M consists of swapping the
columns of a matched block M within M , where the first and last rows of M are (1, 0) or (0, 1).
Call ψ indecomposable if M is a minimal matched block.

Note that if the top row of a minimal matched block is (1, 0), then the bottom row must
be (0, 1) and vice-versa. Moreover, any block swap move can be uniquely decomposed into
simultaneous indecomposable block swap moves whose associated minimal matched blocks are
separated by (1, 1) and (0, 0) rows.

Proposition 5.5. Let p ∈ C(D)T, with D separated. Let M be the BCT of p.

(1) Every block swap move ψ on M corresponds to a pencil Γ of compact invariant curves
containing p.

(2) Suppose ψ decomposes into k simultaneous indecomposable block swap moves ψ1, . . . , ψk.
Then, we have dim(Γ) = k.

(3) The BCT for any fixed point in Γ can be obtained by performing some subset of the inde-
composable block swap moves ψi.

(4) Suppose row i is the topmost row affected by ψ. Let (i, j0) be the index of the 0 in row i
that ψ swaps to 1. Similarly, let (i, j1) be the index of the 1 in row i that ψ swaps to 0.
Then, the tangent weight of Γ at p is

uj1
uj0

h1+sij0−sij1 .

It follows from Theorem 6.5 that all pencils of compact invariant curves in C(D) are associated
with block swap moves.

6 Classification of invariant curves

Definition 6.1. Let C(D) be a separated bow variety and p ∈ C(D)T. Define three types of
invariant curves containing p:

I) curves arising from connected butterfly surgeries (see Section 4.2),

II) curves arising from connected botched butterfly surgeries (see Section 4.3),

III) nonsurgery curves (see Section 4.4).
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A priori, the type of a compact curve may depend on which of the two fixed points you
apply this definition to. We will show in Corollary 6.7 that, in fact, type II and III curves are
always noncompact. Because butterfly surgeries are reversible, a type I curve containing p1 is
also type I when viewed with respect to its other fixed point p2.

Proposition 6.2. The type I, type II, and type III curves containing a fixed point p form three
disjoint sets. Moreover, no type II curve has the same tangent weight as a type III curve.

Proof. It is easy to see from Lemma 4.6 and the constraint (4.1) that a type III curve cannot
have the same tangent weight at p as a type II curve. Thus, no curve is both type II and type III.

A type I, type II, or type III curve γ is constructed as the closure of the orbit of some point pγ
for which we give an explicit representation in p̃γ ∈ M̃s. Suppose γ is type II and has tangent
weight hruj/u

′
j at p. If j > j′, then

BℓaUj′ ̸= 0 for ℓ = d
Uj′

U−
j′
.

On the other hand, for any type I curve, BℓaUj′ = 0 in p̃γ . If j < j′, then bUj′ ̸= 0. Any type I
curve, however, has bUj′ = 0. It follows that no curve is both type I and type II.

Finally, if γ is type I, then p̃γ has b = 0, and if γ is type III, p̃γ has b ̸= 0. Thus, no curve
can be both type I and type III. ■

Curves of type I, II, and III will form a basic set from which all pencils of invariant curves
can be generated.

Proposition 6.3. Let γ1, . . . , γk be distinct invariant curves containing p ∈ C(D)T, each of
type I, type II, or type III, and all having the same tangent weight at p. Then, there is a k-
dimensional pencil of invariant curves Γ with γ1, . . . , γk in its boundary. Moreover, every vector
in Tpγ1 ⊕ · · · ⊕ Tpγk is in Tpγ for some γ ∈ Γ.

Proof. Since the tangent weights of the γi are all equal, Corollary 4.9 implies that the sites
of the surgeries associated with any type I and II γi are disjoint. Since any botched butterfly
surgery must move the bottom vertex of Xn, there is at most 1 type II γi. We can also see
from Lemma 4.6 that the tangent weights of the type III curves are distinct. Therefore, there
is at most 1 type III γi. From Proposition 6.2, type II and type III curves never share the same
tangent weight. Hence, if one of the γi is type II, then none are type III, and vice-versa. In
summary, there is at most 1 i for which γi is not type I.

It follows from the above that each γi is constructed by adding a set Ei of new edges to
disjoint portions of the butterfly diagram of p. Attaching a factor of t ∈ C to each edge in Ei

results in a lift γ̃i : C → M̃s of γi in a neighborhood of p. Section 4.2 describes this construction
for type I curves. According to [15, Section 2.5], there is a complex

⊕
X End(WX) M N,α β

such that Tp C(D) ∼= kerβ/ imα. In particular, α is the differential of the G-action and ker(β) ∼=
Tp̃M̃s, where p̃ ∈ M̃s is the representative of p given by the butterfly diagram. We will not
describe this complex in detail, as it is not required for the proof. Note that γ̃′i(0) + imα
spans Tpγi.

Fix (z1, . . . , zk) ∈ Ck − {0}, and let s =
∑k

i=1 zi(γ̃
′
i(0) + imα). Let p̃γ ∈ M be obtained

from p̃ by adding Ei with a factor of zi for all i. The arguments of Sections 4.2, 4.3, and 4.4
can be applied to show that p̃γ ∈ M̃s and dim(T.pγ) = 1, where pγ is the image of p̃γ in C(D).
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Therefore, γ = T.pγ is a T-invariant curve. As before, we can construct a lift γ̃ =
∑k

i=1 ziγ̃i of γ.
Putting everything together, we have

0 ̸= Tpγ = C
{
γ̃′(0) + imα

}
= C

{
k∑

i=1

zi
(
γ̃′i(0) + imα

)}
= C{s}.

It follows that Tpγ1, . . . , Tpγk are linearly independent, and every vector in Tpγ1 ⊕ · · · ⊕ Tpγk
is in Tpγ for some invariant curve γ. Allowing z1, . . . , zk to vary yields the desired pencil Γ of
invariant curves. See Section 4.2 for the construction of Γ in the case where all γi are type I. ■

Definition 6.4. We say that the pencil Γ in Proposition 6.3 is “spanned” by the curves γ1,
. . . , γk.

This leads us to our main result.

Theorem 6.5. Let D be separated and p ∈ C(D)T. All T-invariant pencils of curves containing p
are spanned by curves of type I, type II, and type III.

Proof. Due to Proposition 6.3, it suffices to construct k distinct type I, II, or III T-invariant
curves with tangent weight w at p for each tangent weight w of multiplicity k in Tp C(D). For
simplicity, let us reduce to the case where m = 2, and the BCT M of p is an n× 2 matrix. The
general case is obtained by applying the same argument to each pair of columns in M . From
Theorem 3.2, the tangent weights at p come in two varieties: those of the form u1

u2
hr and those

of the form u2
u1
hr. It is easy to see from Proposition 5.3 and Lemma 4.7 that the weights of the

latter form are accounted for by type I and II curves. Hence, we turn our attention to the former.
We restrict our attention to weights of the form u1

u2
hr. There is one such weight associ-

ated with each 01-pair. First, we consider the case where c1 ≤ c2. In this case, the extra
constraint (4.2) is automatically satisfied. If there are no 10-pairs in M , then by Lemma 4.6,
the tangent weights under consideration are accounted for by type III curves. Induct on the
number of 10-pairs. Assume that M has both 10- and 01-pairs. We see that whenever a 10-pair
and a 01-pair are only separated by 00- or 11-pairs, the tangent weight of the curve associated
with the 10-pair via Proposition 5.3 is equal to the u1

u2
hr tangent weight associated with the 01-

pair. Note also that the minimal matched block between such a 01-pair and 10-pair makes no
net contribution to the tangent weight formula of Theorem 3.2 or the displacement formula of
Proposition 5.3 (3). A 01-pair with a 10-pair separated by only 00- or 11-pairs always exists
as long as there are both 01- and 10-pairs, so deleting the block between them and applying
induction completes the argument.

Next, we consider the case c1 > c2. Let the row indices of the 10-pairs be i1, . . . , ic1 . Define
M(i1, i2) =M(i1, i2, 1, 2) and δi = δ

(
M(i, n)

)
. Clearly, |δn| ≤ 1, δ1 = c1−c2, and |δi−δi+1| ≤ 1.

Since δi − δi+1 = 1 if and only if M has a 10-pair in the i-th row, we have

{1, . . . , c1 − c2} ⊂ {δik | k = 1, . . . , c1}.

Moreover, defining

k1 = max{k | δik = c1 − c2}, k2 = max{k | δik = c1 − c2 − 1}, . . . ,

kc1−c2 = max{k | δik = 1},

it follows from an intermediate value argument that k1 < k2 < · · · < kc1−c2 . We collect two
basic facts:

(1) If δi − δi′ = 0 for i < i′, then δ
(
M(i, i′ − 1)

)
= 0.

(2) If δik − δik′ = 1 for k < k′, then δ
(
M(ik + 1, ik′ − 1)

)
= 0.
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If ik1 > 1, applying (1) with i = 1, i′ = ik1 tells us thatM(1, ik1 −1) is matched. Applying (2) to
consecutive indices in the ordered sequence k1, . . . , kc1−c2 tells us that the blocks lying between
the 10-pairs in rows ik1 , . . . , ikc1−c2

are matched. If ikc1−c2
< n, the previous two sentences imply

that M(ikc1−c2
+ 1, n) is matched. Hence, rows ik1 , . . . , ikc2−c1

separate M into matched blocks.
Our next goal is to show that every 10-pair except the those in rows ik1 , . . . , ikc1−c2

are asso-
ciated with an invariant curve. By Proposition 5.3, a 10-pair in row i is associated with a curve
if it is the top row of some matched block or if it satisfies the constraint δi ≥ c1 − c2 + 1 (con-
straint (4.2)). Let (i, 1, 2) be a 10-pair where i ̸= ik for k = 1, . . . , c1 − c2. Suppose δi ≤ c1 − c2.
If δi < 1, then there exists i′ > i such that δ

(
M(i, i′)

)
= 0 by an intermediate value argument.

In other words, (i, 1, 2) is the top of a matched block. If 1 ≤ δi ≤ c1 − c2, then δi = δik for
some k. We have i < ik by definition of ik, so M(i, ik − 1) is matched by (1). Applying the
argument above for the c1 ≤ c2 case to each matched block lying between rows ik1 , . . . , ikc1−c2

completes the proof. ■

Remark 6.6. While not necessary for the proof, it is easy to show that the 10-pairs in rows
ik1 , . . . , ikc1−c2

correspond to Young diagram surgeries that move at least one block of the right
column but fail constraint (4.2).

At first glance, the existence of nonsurgery (type III) curves and the constraint (4.2) might
seem mysterious. The proof of Theorem 6.5 elucidates their role. By Theorem 3.2, each 01-pair
corresponds to two tangent weights, w and hw−1. Each 01-pair is also associated with a Young
diagram surgery, by Proposition 5.3. Hence, it is natural to expect half of the tangent weights
to be accounted for by these surgeries, and indeed this is the case. On the other hand, we might
expect the remaining half of the tangent weights to be accounted for by surgeries associated
with 10-pairs. If there are fewer 10- than 01-pairs, we get a deficit of weights, which is made up
by nonsurgery curves. Otherwise, if there are more 10- than 01-pairs, constraint (4.2) kicks in
to correct the surplus.

Corollary 6.7. Let D be separated and p ∈ C(D). Invariant curves of type I containing p are
compact, and those of type II or III are noncompact.

Proof. We have already shown in Section 4.2 that type I curves are compact. Let γ be a compact
invariant curve containing p1. Then, γ contains another fixed point p2. Recall that the tangent
weights of γ at p1 and p2 are reciprocols. First, assume that Tp1γ =

uj

uj′
hr, where j < j′. Suppose

to the contrary that γ is type II or III. In Sections 4.3 and 4.4, we constructed a point pγ,1 ∈ C(D)
such that γ = T.pγ,1. From the form of the tangent weight, we see that pγ,1 is represented by
a point p̃γ,1 ∈ M̃s with b ̸= 0. Viewing γ from the perspective of p2, Theorem 6.5 implies that
γ belongs to a pencil of curves spanned by type I, II, and III curves containing p2. Thus, the
surgery constructions with respect to p2 give us a point pγ,2 ∈ C(D) such that γ = T.pγ,2. In
particular, pγ,1 and pγ,2 are in the same T-orbit. It follows that pγ,2 must be represented by
an element p̃γ,2 ∈ M̃s with b ̸= 0. However, examining the constructions of Sections 4.2, 4.3
and 4.4, pencils of curves with tangent weight

uj′
uj

h−r, where j < j′, are given by orbit closures
of points represented by elements of M̃s with b = 0. Contradiction!

The case where Tp1γ =
uj

uj′
hr, where j > j′ is similar. For this case, we do not need to

consider type III curves. If the curve is type II, then b = 0 and BℓaUj′ ̸= 0 for ℓ = d
Uj′

U−
j′

in p̃γ,1.
Hence, we also have b = 0 and BℓaUj′ ̸= 0 in p̃γ,2. The invariant curves containing p2 with
tangent weight

uj′
uj

h−r all violate one of these two properties. Contradiction! ■

7 Examples of invariant curves

We will apply the classification of Section 6 to describe the invariant curves of the example bow
varieties from [17] in terms of Young diagram surgeries.
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Figure 17. Illustration of T-fixed points and invariant curves of C(/1/2/3/4/5\2\) (with their T-
weights), which is the 3d mirror dual of T ∗Gr(2, 5).

7.1 Invariant curves for C(/1/2/3/4/5\2\)

Letting D = /1/2/3/4/5\2\, the bow variety C(D) is Hanany–Witten isomorphic to the 3d
mirror dual of T ∗Gr(2, 5). Its T-fixed points are in bijection with the 2-element subsets of the
set {1, 2, 3, 4, 5}, where the subset {k, l} corresponds to the tie diagram with U2 connected to
both Vk and Vl, and U1 connected to the three remaining NS5 branes. This fixed point will be
denoted kl. The invariant curves from Figure 17 were computed via Young diagram surgeries.

As an example, consider the fixed point 13, whose BCT and Young diagrams appear in
Figure 18. By Theorem 3.2, T13 C(D) = u1

u2
h+ u2

u1
+ u1

u2
h+ u2

u1
. Using Young diagram surgeries,

four invariant curves are constructed, depicted in Figure 19, one for each tangent weight.

Each pair of surgeries that share a tangent weight (columns of Figure 19) have disjoint sites,
and thus span pencils. The pencil of weight u2

u1
is spanned by two type I curves, so all the curves

of this pencil are compact. The other pencil has weight u1
u2
h and is spanned by a type I curve

and a type II curve, and thus only one curve of the pencil is compact.

Note that 13 also has one Young diagram surgery that is not depicted, given by moving
a single box in the rightmost column, but it is an example of a surgery that does not satisfy
constraint (4.2), as c1 − c2 + 1 = 2.

7.2 Invariant curves for C(/2/3/5\3\2\)

In [17], the fixed curves are depicted for the bow variety C(\1/2/2\2\1/). This is Hanany–
Witten isomorphic to the separated bow variety C(/2/3/5\3\2\). This isomorphism is T-
equivariant up to the reparametrization of T described in Section 2.4. The following computation
will be done using tangent weights of fixed points in C(/2/3/5\3\2\), which differs from [17] in
the exponents of h. The invariant curves of this bow variety can be seen in Figure 20.
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(a) (b)

Figure 18. The (a) BCT and (b) Young diagrams associated to the fixed point 13 of Figure 17.

(a) w = u1
u2

h (b) w = u2
u1

(c) w = u1
u2

h (d) w = u2
u1

Figure 19. Four Young diagram surgeries representing four invariant curves of Figure 17 containing
fixed point 13. The sites are shaded gray. The tangent weights w of the corresponding invariant curves
are also shown. Each pair of curves with the same weight span one of the two 2-dimensional pencils seen
in Figure 17.
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Figure 20. Illustration of T-fixed points and invariant curves (with their T-weights) of C(/2/3/5\3\2\).

Let us consider the fixed point labeled 3, which has BCT and Young diagrams in Figure 21.
By Theorem 3.2, T3 C(D) = u2

u3
h + u3

u2
+ u1

u2
+ u2

u1
h + u2

u3
h + u3

u2
. We can produce an invariant

curve for each of these tangent weights.
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1 0 1
0 1 0
1 0 1


(a) (b)

Figure 21. The (a) BCT and (b) Young diagrams associated to the fixed point 3 of Figure 20.

(a) w = u1
u2

(b) w = u2
u1

h

Figure 22. The two Young diagram surgeries possible between the top two Young diagrams of Figure 21.
The sites are shaded gray and w is the tangent weight of the corresponding invariant curve.

(a) w = u2
u3

h (b) w = u3
u2

(c) w = u3
u2

Figure 23. The three surgeries possible between the bottom two Young diagrams of Figure 21. The sites
are shaded gray and the tangent weights are included. Note that surgeries (b) and (c) share a tangent
weight and have disjoint sites, and thus span a pencil of invariant curves.

First we check for type III curves. By Lemma 4.6, there is one type III curve, since c3−c2 = 1.
This curve has tangent weight u2

u3
h. If there are other curves with this weight, they must all be

type I and, together with the type III curve, will span a pencil.
We now seek to construct five more invariant curves that come from Young diagram surgeries.

To do this, we will consider surgeries between each pair of Young diagrams separately. There
are two surgeries between the top two Young diagrams, three surgeries between the bottom two
Young diagrams, and zero surgeries between the top and bottom Young diagrams. These five
surgeries are depicted in Figures 22 and 23.

With these six curves described, we now build pencils of curves. There is a pencil of curves
with weight u3

u2
, which is spanned by a type I curve and type II curve, as seen in Figure 23.

There is also a pencil of curves with weight u2
u3
h, spanned by a type I curve from Figure 23 and

a type III curve. No other curves share weights, so these are the only multidimensional pencils
of invariant curves.
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